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EDITORIAL PREFACE

The role which theories of probability and statistics have played in
the development of physical and life sciences and social studies is too
well known to require a justification for ineluding this volume in 2
serics of books devoted to applieations of mathematics,

It is difficult to imagine a segment of mathematics that bears Qre
intimately on everyday developments and which exerts more prof ;%::d
mfluenee on modern scientifie thought than the theories .05 b’péba—
bility and statistics. The unification of these theories on 8 level that
imposes no demands on the real variable techniques, Qnd yet pre-
serves the spirit of modern developments, ¢alls for e tentive practical
and theoretical knowledge as well as exceptional ¥xpository talents,

In the judgment of the editor, the authors of thigwolume have madc
& successful pionecring step by producing an/gmiinently useful book,
In its original edition in Danish it has alteady achieved an enviable
record in continemtal Furope, and it is¢ .\p'ed that this augmented
and revised version of it in English willyrender real service to applied
mathematicians in the I'Gnglish-speg;kiﬁg‘ world.
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N 1. 8. BokoLxigOFF
Los AwerLis, CALIFORNIA &\\
January, 1549 ) '(3
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PREFACE
To the Danish Ediition

The purpose of the present book is to give an elementary introduc-
tion to the theory of probability and statistics with special regard to
its practical applications.

In recent years the theory of probability and statistics has U.Qd -
gone a very fruitful development with respeet to the epistemological
implications, the mathematical foundations, as well as thé Taathe-
matical theory. We have tried to indicate in this book: thrs modern
development, all three directions of which are, in our Qplmon of the
greatest importance for all students of physics, chemlstry, engineering
and the other branches of modern science in whieh probability and
statistics arc used more and more as a worklgg ool in the classifica-
tion and analysig of our experiences.

The first three chapiers are of a purei?‘g‘iementaw nature, In the
following chapters, we have pr(,kupposed 2 knowledge of the ealenlus,
and, in the lust chapter, a know Iedge ot the theory of linear equations.
In the treatment of the theory of statistics we have followed the
modern English school founded essentially by Tisher; and our discus-
sion of the theory of errors fhakes use of the statistical methods devel-
oped prineipally by this(s:c%ol. These methods take into account
the fact that, in pragiiee, one often has to base his conclusions on a
small number of ohservations. Ag is well known, the methods of
the English schosl®Have been extremely fruitful in biology, medicine,
agriculture, anas Other seiences. In the treatment of the theory of
ad,]ustmenl\we have used the theory of matrices, principally because
of the comﬁe way in which it may be done. We believe that many of
the mqrc ‘advanced students now have some knowledge of the matrix

l%ﬁx;y, nevertheless, we have included an appendix giving the most
impértant definitions and theorems. Since the problems connected
with the praetical computations have been dealt with thoroughly in
other texthooks, we have emphasized only the prinecipal questions in
cur treatment.

We have chosen the examples from such different ficlds as ordnance,
tolephony, theoretical physics, and actuarial science, In so doing
we hope that we have succeeded in showing the fundamental role of
the theory of probability in modern sclence.

Tor convenience we have given the French and the German words

i



viif PREFACE TO THE DANISH EDITION

for the most important concepts; and, furthermore, we have added
an extensive index, various statistical tables, and a list of some of the
literature that is of special importance for the practical applications.

As for the symbols and notations, we have taken great care, firsi,
to keep as closely as possible to those which seem to be already stand-
ardized, second, to carry out consistently the principle of sharply
distinguishing between theoretical snd empirical concepts by using
Greek letters for the former and the corresponding Roman letters for
the latter. Unfortunately, the field of prebability and st-atistic&?,\hows
& very confusing picture, a variety of symbols and notationg for the
same concepts still being in common use. Tt is to he hopedthat an
international standardization of af least the basic symbels and nota-
tions will be arrived at in & not too distant future. ™\

We thank Professor H. Cramér of the Universitf;;}\)f Stockholm for

A

having read the manuseript and for his kind permission to utilize, in

reprint Tahles IT, 111, V, and VI fromytheir Statistical Tables Jor Bio-
logical Medicol, and Agm’cultum{ }?gsé&rch. Finally, wo shall highly
appreciate criticism and commewts*from the readers, hoping to make
use of them at 5 later date, N

A Nizis Arimy

O K. Rax -
- . DER Brem
Copenhagen, 1946 \‘ \

»
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PREFACE
To the English Edition

Apart from minor alterations and additions, the present book follows
the third Danish edition.

Wo should like to thank Mr. W. G. Stroud for his very great helRin
checking the translation, which was made by one of us (N.A.) during
his stay as visiting assistant professor at Palmer Physical Labai‘gitory,
Princeton University, N, J,, during the year 1946-1947. g"@‘e"thank
Dr. G. U. Yule and Dr. M. (. Kendall, also Messrs. Charles Griffin
and Co., Limited, London, for kind permission to'rpbriﬁt preblems
87, 88, and 89 from An Introduction to the Theorg ,oj\?iatz'stics, twelfth
cdition, p. 309, Table 17.1, and p. 330, exercisea\‘l:?‘ﬁ and 17.3.

z'\\‘;

& & Nigws Arrmy
) K. Ranoer Bucm

S

ol ¢

Copenhagen, 1949
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I.

THE CONCEPT OF PROBABILITY

§ 1.1, Just as in geometry, mechanies, and other branches of applied
mathematics, the purpose of the theory of probability is to give a
mathematical deseription and analysis of a certain field of cxperighle.
The theory of probability is that part of mathematies which dgscribes
statislical phenomena, 9

In the treatment of problems {rom far different ficlds, thh Scientific
and praclical, one offen meets events which appear, Q.\more or less
large numbers, These events may be classified as fgllaw

1. The same event is repeaied & certain numbcrlef times, the event
being brought back to the same initial statebefore each repetition.
Examples: repeated measurements of » physichl guantity; a series of
throws with a die. NS

2. The same event which changes with time is obscrved a certain
number of consecutive Limes. Emmp‘l’é‘,: the position of one Brownian
particle is observed through a mwrﬁscopc at various times; the number
of demands for a cortain commodlty in one shop on differcnt days.

3. Several disiinet cvem\?whl(,h in the problem at hand may be
considered to be of thé stme kind are observed simuitaneously.
Examples: the positions“of several Brownian particles are observed
at the same time; fHemumber of demands for & certain commodity in
different shops oh$he same day; the heights of & number of soldiers;
the yiclds of whcat from a number of different plols; the life times of
a number b(hg,ht bulbs.

4, The{%hcoretlcal possibility that several disiinet and different
cvenls\’éf'é observed simultaneously. Examples: the measurcment of

thé Weights of a certain number of cows, hogs, and hens. This case,
h ver, plays hardly any role in practice.

The characteristic feature of a statistical deseription is that, in
contrast to a causal deseription, it is not applied to a single event but
only to the whole course of a large number of events; ie., it applies

Note: In thia book, equations are numbered cotsecutively in each article and are
reforred to as follows: in §2.5, eq. 1 [rom the pame article is referred to as (1};

eq. 2 from §2.4 as (2.4.2); and so on.
Sections marked with an asterisk (*) are of a more difficult nature and may

be omitted in a first reading.



2 CONCEPT OF PROBABILITY [CHAP. 1

only to properties belonging to a certain number of events conside.rnzr.i
as 1 whole. Thus, for example, in making a statistical study of child-
births, an investigator is interested only in how many children have
been born, not in who has had a child. Also, in making such a =ta-
tistical study one can investigate how the number of children is dix-
tributed between the two sexes, or among the single familics, or among
different groups of the population, and so on. One ean also investi-
cate how these facts change in time. T'urther, the averages of the
mumbers or their fluctuations can be emphasized. 5

[Towever, the problem of applying a causal or stafistical desgriplion
in a specific inglance Is quite independent of whether the p}}eﬁnm%‘nnn
in question is of a causal or statistical nature, « W

L 3
~
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A
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Example. BSuppose that a person walks down a'@a beside which
there are consecutively numbored telephone pdles and observes the
last digit on each pole. He can then desciibe these observations
either by stating that the numbers come in g g}r?:-ain regular sequence,
say 8,9, 0, 1, 2, and so on (a causal des¢eiption), or he can state how
many times each of these numbers occurs.in & large number of ghserva-
tions (a statistical deseription), 3%

~nNy
LN

Which description, causal .or:si’atisticai, will be used In & given case
depends entirely on whicly8* more appropriate. As o rule in both
cases the description cofisidts of simplifying and idealizing the phe-
nomenon under consitération by constructing a certain model—in
our case of 4 mathématical nature—which represents in the best wuy
those features of the actual phenomenon which we, cursclves, 1'cg:.u-lt.1
ag the most"‘essential ones. Examples: the representation of observed
phenome:n\a In"space by means of Fuclidean geometry; the description
o.f the m0tion of bodies by means of analytlical mechanies; the applica-
tion Of%simple mathematical laws to the description of statistical
phgnomcna, (ef. Chapter 10).

No such idealized model of a certain fiel
coilfused with reality itself, Therefore, any such model is in itself
neither “true” nor “false,” a condition that is further stressed by t-l-le
iziiiiaéhjza(;zn, slil.s a rule, construct several d'iﬁfzrenb‘ I_nodels repre-

’ amie puenomenon.  Whether or not 4t is legitimate to apply
a cem‘am model 15 determined entirely by the criterion, that the model give
a S;‘]I?!i;wﬂiifly satisff:zciory description of the real world {cf. §9.7) ?
i treatedaa(;e;ti;?-; Clg;‘;uphtéievents 18 desc'nbed ina statia’t-ical way,
orinciple or f " p omenon. This means that, either from

p Yom practical reasons, it is congidered impossible to predict

d of expericnce should be
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the “final state’ of the phenomenon from the “initial state’” and the
known laws of nature. '

If, on the contrary, it is regarded as possible to predict the final state,
the description is a causal one. We wish to stress the fact that, since
it may also be found that the finnl state of a statistically described
phenomenon is always the same for the same initial state, the statistical
description contains the causal as a special limiting case, However, this
happens so rarely in practice that as a rule the statistical deseription
gives a less idealized model of the real world than the causal fne.

Random phenomens are characterized by the fact that Lhey are
conditioned by so many interacting causes that it is practlcgl[jy impos-
sible to analyze them accurately enough to make exact \predictions.
The jfirst reason for this random character may be thatdwe cannot
define the initial state accurately enough to determi{le the final state
uniquely.  This is the case: v

{e) If a very small variation in the init‘i,aitst’ate ean cause o large
variation in the final state even th(}qg}}n\;}fé phenomenon is simple
in character, For example, an extrenie y smull change in the initizal
rotational veloeity of a roulette Whéel can decide whether the final
gtate iz black or red. Thus, the ‘pnnclple of all games of chance
is to construet them so that pvgﬁ a very small change in the initial
state has a large effect onshe final state,

(by If the initial sta,té\\is so complicated that it is practically
impossible to ascertam\lt accurately enough to detcrmine the final
stute uniguely, eyen though the phenomenon may again be very
simple. Ior c*{Qmple, it is known that 1 gram of hydrogen contains
3 > 10% mol..ﬂ\(.ule;,, but to measure all the coordinates and velocitics
of these molecules at a given time (the so-called microscopic stata)
is, of couvse, impossible. Therefore, to describe the initial state
other? é}uantities such as thermodynamic pressure p, volume », and
a,bscﬁlue temperature T, have to be chosen; but, since such a macro-

\(,Opu description does not determine the microseopic state uniquely,
we eannot give a unique prediction of the final state from the
macroscopic state alone. Consequently, in spite of the fact that
the motion of each molccule is causally determined from the equa-
tions of classical mechanics, the state of this mass of hydrogen
as & function of time must be considered a random phenomenon

(cf. §$4.16).
Such a gituation occurs whenever there is a contradiction between

the two demands which must necessarily be made of the definition of
the “state” of a phenomenon. The first of these demands is that the
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properties which characterize the state allow all other propertics in
which we are interested to be determined uniquely by means .of the
laws of nature; the second, that the properties which characterize the
state are direetly observable and can be stated.

(¢) If the initial state cannot in principle be measured because o
measurement may produce an uncontrollable change in the phe-
nomenon investigated. This is precisely the case for atomie phe-
nomens, and thus quantum mechanics is decidedly differenf\ﬁ'mn
classical physies in which it was assumed that the inferaction
between the measurement and the measured cvent c-oulxd.filmiys be
made arbitrarily small (cf. p. 5). . \J

L 3
~
N

i

mn\ 3
The second reason for the random character of aﬂlpl}enomenon may
be related to the laws of nature involved. This¥s the case:

{a) If the relevant laws of nature a're\ﬁd complicated that in
practice it is impossible to make thg\:ohgﬁfctically possible caleuli-
tion of the final state. An examplc of\this is a serics of throws with
2 dic; only a few throws show tha}, the results are randomly disiri-
buted. Theoretically one could\predict the result of given throw
if one knew the exact initial\Dosition and velocity of the die, its
geometric form, its mass; its moments of inertia, the elastic prop-
erties of the die and gf the table, and so on. Thus an exiremely
aceurate analysis eijHvﬁhcse cooperating causes would be necessary,
but such an analysls would be so complicated that in practice it
would be imppgsible.

(b) 1f the :rélévant laws of nature are not sufficiently well known;
this is t-;'up:e.g., in most biological phenomena. Thus, if we measure
the heights of & number of soldiers, the results are conditioned by a
number of biological processes such as heredity and nutrition, the

' :nguiarities of which are only partly known.

\/The third reason for the random character of g phenomenon is that
all laws of nature ave strictly valid only for idealszed phenomena. As
alreafly uflent-ioned, to deduce the general laws we have to simplify
and :adea?aze the phenomena, intenticnally neglecting many factors ana
.consx.derllng only one of the acting eauses. An example iy the law of
Inertia, in which friction is usually neglected, [In reality the phe-
nomens are always complicatod and, furthermore, are subjected to
d1sturb1ng. factors such ag changes in temperature and pressure, shocks
backlash in screws, and mechanieal, electric, and magnetic’ acfion;
from the surroundings and often from the measuring apparatus itlsclfh
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Thus, if we measure an electric current by means of an ammeter, the
current is changed, since the meter itself has a certdin resistance.
In this example the disturbing factor may be calculated and the
measured value corrected. However, this example is exceptional.
Especially conspicuous cxamples of the fact that the measurement itgelf
may alfect the event considerably are encountered in biology and
psychology. Thus an investigation of the function of a vital organ
of a living animal may easily disturb the whole organism to such an
extent that the animal dies.  Similarly, if we wish to analyze an emo-
tion such as fury in ourselves or in others, the investigation may sily
result in the disappearance of the emoction. Buch disturbing f;gors
are often of incaleulable magnitude and, as mentioned Jfore for
atomic phenomena, may in prineiple be uncontrollablg.l"Neverthe-
less, these disturbing factors arc just as decisive as thp{}th‘er causes in
the determination of the phenomena. Ience every physical measure-
ment is to a larger or smaller degree a randomsgvent giving different
results in repeated measurements. N

As a rule all three of these groups of facj:-oh?appear stmultaneously,
Consider the throw of a die as an exaiple. First, the initial state
enters in a critical way since a very sﬁ::all change in the initial state
may be decigive in giving a result of @0r 6. Second, the laws of nature
are 30 complicated here that “{ejcbuld not carry through an accurate
caleulation even if we knew “thé initial state exactly, and, finally,
there oceur disturbing fa.c;f\ors guch as air resistance. Another weli-
known example of a yarddém phenomenon in which all three groups
of factors enter is found'in ordnance, in which the points of impact of
2 serics of shote wilNalways be diflerent.

$1.3. An nbseré‘aﬁon is defined as the statement of a definite result
of a random pHenomenon. As a rule the result of an obscrvation will
consist of bﬁe‘or more numbers, but it may be characterized in other
ways.  Inthe cxample of the throws of a die, the observation consists
of thréwing the die and reading the number. The result of the obser-
vilol iz one of the numbers 1, 2, 3, 4, 5, or 8. In congidering the
moYion of a molecule, the observation consists of measuring the posi-
tion and velocity of the molecule at a cerfain time, and the resull
consists of gix pumbers, viz., the three coordinates and the three
components of the velocity, cach of which six numbers may assume
any value between —« and . On the other hand, if we consider an
investigation within population statistics, the result of an observation
need not be a number. Thus, if the obgervation consists of reading
from the census record the sex of an individual, the result is either

“male” or “female.”
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§1.4. Let us now consider a definite random phenomenon in whis:h
we have made a series of n observations—in one of the four ways dis-
cussed in §1.1. Let us count the number of results, ns, belonging to
a certain specific class, Here we say that the eveni A has happened.
The number #, is called the absolute frequeney of A, and the
fraction

fay ==
s called the relative frequency in the given series of 01)30}'@’};}&0115.
Ezperience shows that the random variations or statistical fluéthations,
as they are also called, are, as a rule, smoothed out, theysmoothing
process following & cerfain law which we will call thewtandom law,!
the validity of which is a fundamental eondition ,ﬂqx\H applications
of the theory of probability to the deszcription of 1@5{1]’ phenomena:

If, in o definite, accurately staled category © dfNabservations, one calou-
lotes the relative frequencies of a certain eveith/A in different series of
observations, experience shows thal the nufbers so oblained deviate pery
litile from each other {f each series cohgisls of a very large number of
observalions.

In other words, if we plot thege velative frequencies on & line, they
are grouped about a common;;i»’alue—a sort of “‘cluster point,” the
spread of the cluster decrgasing with increaging number of observa-
tions in each series. ¢ dénote this form of randeomness the word
stochastic random{ésé has heen introduced.

N

) Tasip 1
e \ / Number of Units per Group
R >“ 25 250 2500
’&cm‘ber of Units Rejected per Group and Corresponding Percentages
R\ 14 12 (4.8) 157 (6.28)
B 4 (16) 14 (5.6) 152 (6.08)
O 0 () 17 {6.8) 157 (6.98)
O 0 {0) 11 (4.4) 136 (5.44)
1(4) 22 (B.8) 152 {6 .08}
1{4) 8 {3.6) 185 {5.40)
2 (8 15 (6.0) 143 (5.72)
0 (0) 14 (5.6) 160 (6.40)
1(4) 21 (8.4) 149 (5 06)
1(4) 8 (3.2) 153 (6.12)

' This law of experience is often called the law of large numbers, but this

name %s alafo (lft-en used for & mathematical law (ef. (8.1.14)). This dual use of the
name 15 unfortunate and has resylted ; m ion i i ic de I
ent of peap In much confusion in the historie develop-
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Example 1. As an example of stochastic randomness we shall
consider the percentage of rejects in the manufacture of an industrial
product. In Table 1 we give the number of rejected units in each
of 10 sampled groups, each group containing first 25, then 250, sand
finally 2500 units rcspectively. The figures in parentheses are the
respective percentages. The variation in the percentage of rejects is
lustrated in Fig. 1, in which the percentages found are plotted on
a straight line. Each of the values found is indicated by a dot over
the corresponding point on the line. It should be noted that the per-
centuages of rejects found (and thus the relative frequencies\are
grouped around a common value of about 69 and that the Q)read of
the variations js smaller when a group contains more units{"y" ~

a3

. : S
: : - "\" .
f T T T T T T T T f T N j T T )
0 2 4 6 8 10 i 14 16
O
NS -
. )
.. - s aw - LY ol
{ T T T S LA 7" . A B I — 1
0 2 4 6 g\ 10 12 i4 16
A
g LI~
f T T T AT T T T T T T T T A
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,\',’“ Fie. 1.

Example 2.:>fn practice, forms of randomness other than stochastic
are also enae}\ilrﬁt-ered. Let us again consider the example, §1.1, and let
the obsef:s}emtion of the number 2 as the last number on the felephone
pole a‘the event A. In general, na/n~ 1/10. If, however, we
cm:kﬁﬁ "énly every tenth pole, we will find that na/n = 1 for all n's
if we start counting at & pole with the number 2 and that n./n = 0,
othorwise.

In this extreme case the relative frequencies are not grouped around
8 eommon value. Consequently, it is inappropriate to use a statis-
tical description—a fact which is also obvious since a causal deserip-
tion ean be given. For a “real” randomness we shall expect that
n4/m is grouped around a common value cven if we make a selection
of our observations in & “random”™ way—as would be the case if the
numbers had been ohtained, not by this method but by choosing the
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last digit of the numbers on a cerfain page of a telephone directory.
We shall leave it to the reader to try this for himself.

If experience shows that the random phenomcnon considered is a
stochastically random phenomenon, there is “spmething,” i.e., some
physical property of the phenomenon considered, which appcars to he
constont. For a mathematical description it is now an obvious pro-
cedure to idealize this expericnce by abstracting from the deviations
between the relative frequencies and fo introducce one definite nymber
to represent the “true” value of the relative frequencies of t}l@vent.
in the same way that we introduce onc definite number twgpresent
the “true” value of any other physical quantity (ef. §I12). Thus
we interpret the relative frequencies as the experimental values of one
and the same physical constant which is determine@py the nature of
the event A and of the category of observations @ (cf. § 1.6). Bui,
as already stressed, the legitimacy of this interprctation is based only
on the faet that the interpretation leads to @»&Lppropriate description
of the statisiical phenomena that are etf in practice,

This physical constant, for which theyrelative frequencies are experi-
mental valucs, is called the pmbabil‘l‘ti;’of the event A in the category of
observations © and ts denoted by P(A). DBecause of the manner m
which P(A) hag been introd’u:c.,(’a'd, it iz also called the true relative
frequency of A. o~

We wish to st-resg..‘tt\lat, with this definition, the probability
is not defined for angyent which can oceur only once, i.e., for an event
which cannot be: reproduced.  For example, we cannot speak of the
probability of {he"event that a certain tennis player will win a specific
match in spiteof the fact that in everyday language the word prob-
ability ig,‘{;;.p lied to such events.!

Tl}u%this number, the probability, is determined by A and € in
th?f sﬁme sonse as the weight of an iron bar is determined by the

mslggmhc iron bar even though repeated measurements of this weight
\_BIve more or less differcnt values. In the same way that experience
shows thEPt, as a rule, the accuracy of & measurement can he incereased
:goingﬁgtaui jﬁ:;;tlvcc:frilszsurin;g.linsltgument?, it_also, as & rule,
bility can be increasedyb k'emp‘nca ctermination. of a prc?baf

¥ making a larger number of observations

! Certain a:uthors have algo tried to define the mathematical probability of
non-reproducible’event-s as the degree of reasonable belief; but then the di{ﬁcu:;tiea
are how to f)otam the numerical values in conorete eases and how t0 com 941'.(j
giver numerical values with experiences.  The best-known exponents of thig sciooll

are J. M. Keynes, A Treatise on Probability, Lond :
af Probabilily, London, 2 ed., 1048, o oncom TRl . Jefreys, Theory
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{ef. Joxample 1). But, in the same way that the accuracy of any
physical measurcment cannot be increased indefinitely, the aceuracy
of & mensurement of a probability cannot be inercased without limit.
Every empirical number can almost always be determined only within
a certain limited accuracy, and therefore in practice it is meaningless
to speak of performing a limiting process by making the number of
obzervations “infinitely large® (ef. p. 11).

The introduction of the eoncept of probability is obviously analogous
to the introduction of every other idealized eoncept by means of which
we deseribe and classify observed phenomens {e.g., Fuclidean s.tréusght
line in geometry, position a5 a continuousfunction of time in mechagnics),
In the same way that we always urnconseciously make th@;rcl“evant
idealizations, as for instance from “‘ observed straight ling¥¢o ““Euclid-
can gtraight line,” and in the same way that we alwaysz to keep the
mathematical model scparated from the corresponding reality, in
probubility we must now accustom ourselves poxbly to the unconscious
dealization from the relative frequency of an gnend fo its probability and
partly Lo the separation in owr minds of .tQ&\;-uﬁ‘é concepts, frequency and
probability. In the following we shall dse) as far as possible, diflerent
types of letters for the two c-onceptsf;‘f{'bman letters for all concepts
referring to reality, corresponding Greck letters for the related con-
cepts in our model. “

§1.5. In certain problemait is possible to deduce theoretically the
probabilities of the even’tsx%nsidered from certain stmple hypotheses
about the nature of §he“phenomena. Such probabilities are called
a priori probabilibies, i.e., determined in advance. In contrast,
probabilities deteftnined from a measurement of the c-orr:esponding
relative freqqe.écies are called a posteriori probabilities, ie., deter-
mined aftersard.

A prior%ﬁfobabﬂities are found especially in theoretical physics,
e.g., in‘k’vjn@tic theory of gases and in gquantum theory. Also a priori
probabilities are met with in the theory of games of chance. This
ahpfi(;ation of probability is of especial historic interest gince the treat-
ment, of such problems led to the rise of the theery of probability in the
seventeenth century, in particular, from theinvestigations of the French
mathematicians Fermat and Pascal. If, for cxample, we play with a
die, we shall expect from reasons of symmetry that each side will come
up as frequently as any other in a long series of throws. Since m all
there are six possible results of a single throw, it follows that the rela-
tive frequency of each of the six single results must lie very close to
1/6; therefore it is & natural hypothesis to aseribe the probability 1/6
to each of the six results. Correspondingly, we must ascribe the
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probability 1/52 to the event of selecting a queen of hear:os from 2
deck of cards and the probability 28/52 to the event of selecting a card
that is either red or & king, or both. This number 28/52 is obtained by
noting that the event in question has occurred only if the selected card
is either one of the 26 red cards or one of the 2 black kings. However,
it should be remarked that in all such a priori determinations of proba-
bility we make certain, usually taeit, hypotheses, e.g., that the die i3
not “fulse,”” that we play “honestly,” that the cards are well “shuffled, ™
and g0 on. &
In all, the problems of games of chance mentioned above haw'g\ﬁxw'o
common features: (¢} that there are only a finite number Q,ffbu%sil')](é
results; and (b) that from our knowledge of the play we, “g priori,”
regard certain results as “equally likely,” ie., equ:g.l{ir""’pro’t::a,bl&1
The classical definition of probability fits these {dhs very closely
by simply defining the probability of an event agtHexatio of the num-
ber of results favorable to the event to the tofalMiumber of possible
{and equally likely) resuits. In addition to th@fict that this definition
is logically a circle definition, since “equglly likely” can be defined
only as “equally probable,” which was fobe defined, it can be applicd
only when the observation in queg,tit}n' can give a finite number of
different results.  Furthermore, there is often doubt as to what has to

be understood by the phrase “e,ﬁg}lélly likely results,” as shown by the
following example. O\

Example. Assumeg that we have threc identical bureaus, 4, B, and
', each with 1wo dra}vér . In A, each drawer contains a gold eoin; in
C, each drawer z si}y’er coin; and, in B, one drawer contains & gold
eoin, the otherPa%ilver coin. We choose at random a bureau, open
cne of the gr@ﬁers, and find a gold coin. What is the probability
that the ‘l%’rg}a.u chosen is just B? First, it might be argued that, Sinc-‘é
only Aap B contain gold coins, the number of possibilities is 2 and
only“’\il Of these is favorable. Consequently, the probability is 1/2.
Bu{, .I'E: can also be argued that, in all, there are 3 gold coins of which A
ftains 2 and B only 1. The number of possibilities is 3, of which
only 1 is favorable, and thus the probability is 1/3. Wh,ich of the
bwo arguments is correct? If the opened drawer had contained a
silver coin, we should also have obtained the answers 1/2 and 1/3 i
the first and second arguments, respectively. Hence the prohability

! We stress that it 38 our positiv i i
die, w.hich leads us to expel(:t eache gi??&:&fﬁi} Opfrzlll)ealr;l]gmi\%i\?::tl-;fgz:: iotf 52
his expectation is due to our ignorance of the behaviorh,

e.g, ofadie. Cf. the discussion of this no: i iven i
der Physik, Vol IV, p. 67, Bexlin 192;38. Pomt Ry H. Boineact, s given in Handbuch
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of the chosen bureau being B is independent of whether or not
we open a drawer. However, if we do not open a drawer, the three
bureaus are, of course, cqually kilkely and the required probability is
1/3. Thus the first argument leads to a contradiction and has to be
rejecied {(cof. Example 2, §3.8).

This c¢lassical definition of probability, due essentially to Laplace,
wie very appropriste in the infancy of probability when the theory
was applied only to the deseription of games of chance. However,
as we have remarked, this definition s much too narrow for the despr-
tion of gencral statistical phenomena, since, first, there may be\more
thun a finite number of possible results, and, second, it may net be
possible to reduce the phenomenon considered to a number of cqually
likely possibilities. TFor example, from the classical defi ition it would
he fmpossible to define the probability of the resulfl6+with a loaded
die— quite apart from the fact that we can alsq\play falsely with a
irue die. From the classical definition we eften cannot speak of
probubility in a certain cvent. For example;}:n the casc of the prob-
ability of a boy's being born, what shomld be understood by equally
likely results? Furthermore, the clglajé“mal definition always gives &
rational number, so that the exten,s«ioﬁ‘t-o a more genceral definition of
probabilily, where a probability, m.ﬁ)‘f be an irrational number, is to &
certain extent analogous to the extension of the concept of numbers
from rational to real nllmpe'\r:.

Finally, various aughdrg have tried to introduce the concept of
probability in a way different from ours, which is essentially due to
Iréchet, and fromsibe elassical. The best-known exponent of this
school, von Mised\ defines the probability of an event A as the limit of
the frequencydm./n, for n—> =, in onc definite infinite series of
observatiq@“(}ca]led by him a collective). The existence of this limit
is postuldsed as the [irst axiom of the theory. A definition of this
type sems at first sight very attractive, but a closer analysis has
sHown” it to lead into great mathematical difficultics. Apart from
thefe difficultics, such a constructive definition involves a mixture of
reality and model which has been abandoned in all other branches of
applied mathematics in favor of an axjomatic treatment. For
example, we never introduce the concept of a Euclidean straight line
a8 the limit for infinitely decreasing width of o line drawn on & black-
board with a picce of chalk, or the concept of a mass point as the himit
for infinitely decreasing radius of a real body.

1 Cf, Tréchet, *The Diverse Definitions of Probability,” and: © Exposé et t_ii_scus;
sion de guelques recherches récentes sur les fondements du ealeul des probabilités.
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§1.6. We wish to stress the faet that by the definition of proba-
hility (§1.4) we must not consider only the nature of the event but
also the nature of the category of observations. This latter is, as a
rule, sufficiently defined in the formulation of the problem itsell.
But often the necessity of exactly defining how the observation is to
be performed has been overlooked, with the result that wrong con-
clusions and paradoxes are arrived at. If we ask for the probabiliiy
of a hit for a given gun and a given target, there can be no doubt about
the operations that have to be performed. Ilowever, if the proba,@it};
of a person’s dying within one year after purchasc of an insyrance
policy is required, the answer is much more difficult t-oidg‘-:téﬁnine,
Within whieh group of men must we caleulate the relative frequency
of death? Obviously, different values for the probabili Saze obtiaincd,
dependent on whether the group of men of the samé{ age is chosen or
the group consizling only of males of the same age or, furthermore,
whether the vocation, the state of healih, and 0 on, are taken into
account. ‘\

This fact is shown even more conspigionsly in the so-called “ Ber-
trand’s paradox.” Here the observatibn’ consists of randomly draw-
ing a chord in a circle of radius ¢ and ¥eading off its length. Suppose
that the probability that the 1e1;g1;h of the chord is smaller than ihe
side of the inseribed equilateral{riangle, that i, smaller than V3, s
required. Because the pracess of “randomly drawing a chord” is
not a well-defined opcrgt\in}, It is possible to give many contradictory
answers,  We shall giws,only the two following solutions:

1. The perpendietlar distanee from the center of the circle to the
f:hor(_i isa nurri'b‘e.y:b?:tween 0 and r. The chord is smaller than Var
if this fiist-ar;@qig larger than #/2. If the probability is measured as
the ratio of‘t;he favorable length /2 to the possible length r, the result
is 1/2, \\

i 2“. Thﬁ G(:JII’E.I‘&] angle of the chord is a pumber betwecn O and .

\%ﬁ%\ph(ﬁdﬂi srrll'zgel}; ‘ﬁan.\/g r if the central an.gle is smaller than

central angls 2?/3 ;Jo lt};e}’ 18 measured as the r_atm ‘of the favorable
possible angle , the result is 2/3.



2.

THE FOUNDATIONS OF THE THEORY
OF PROBABILITY

AN

§2.1. Having discussed the concepts which cxperience shgws appro-
prigte to the deseription of statistical phenomens, we ghall ‘now state
the fundamental laws or axioms, that is, the ml&ﬁ‘&is ‘among Lhe
numbers we introduce as probabilities, which musq\ﬁbld true if our
theory is to give us a suitable description of thé\real world. For the
probability of a single event we may, a8 a’ruk;' choese freely among
infinitely many numbers (within a ceri;z{iﬂ\'iﬁtewal, as, e.g., between
5.8¢ and 8.3% in Example 1, §1.4). @owever, by the simultaneous
mtroduetion of probabilitics for sc}fei}gf'évents, we cannot introduce
these as we please because theresdxist certain relations between the
eorresponding relative frequendiés and because from our definition of
probability (§1.4) we mustdemand that the same relations hold irue
for the probabilities. This we must lay down certain fundamental
laws, which will form’.tﬁé'foundations of all the following deductions,
but, which cannot jhemselves be proved mathematically. (This is
analogous, e.g.,\t&’the axioms of Fuclidean geometry, Newton's laws
in mechanics, s;nd Maxwell’s equations in electrodynamies.)

Since a, nClgtive frequency is always of the form f = na/n, where
0=n, <ﬂ"§‘,m, have 0 < f < 1, and thercfore we must demand the
same rélation for any probability.

F;u;}:r axiom: The value of a probability, P, is a number between 0
and/1, both limits included:

1. (D

0=prP

IA
A

§2.2. By the phrase a certain evenl, denoted in the fo]%owing by
E, we understand an event which oceurs in every obgervation. The
relative frequency, f(E), of a ceriain event is thus always

Bra
Il

§E) =

und therefore we must demand the same for its probability, P(&).

13
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Second axiom; The probobility of o certain event s 1:
P(E) = 1. (I}

We stress the fact that the converse need not be true. If an event has
the probability 1 (denoted as a stochastically certain event), this
need not mean that the event is certain in the usual sense bui only that
it is practically certain, that is, that its relative frequenecy must,
be expected to be very cloge to 1 if the number of observations iSl{z{u;rg:
{cf. §9.2). In the following, when we speak of a ceréain eveut we
shall mean a stochastically certain event without expliciL;Lyf' stating
cvery time that this usage of the language deviates sligl}[;b}"from the
commonplace. p \\“

§2.3. By the phrase an impossible event, denotqd\'in the following
by O, we understand an event which cannot oceutdnbny chzervation.
The relative frequency, J(O), of an imposs-ib:l\f\gvent Is thus always

L &/

o N\
10) == = G0
n
and therefore we must demand thq;ét;‘riit; for its probability, £(0).
~ Third axiom: The probability 9fan impossible event s 0:

LR(0) = 0, (IT1)

Here, ag in §2.2, the eonverse need not be true. If an event has the
probability 0 (denoted “as g stochastically impossible event), we
¢an conclude only,that the event i practically impossible, that ix
that its relative }"FeQuency must be expected to lie very close to (0 i;'
the numbeti glf dbservations is large (cf. §9.2). In the following, when
we speak ofan impossible event, we ghall mean g stochastieally i,mpos-
gible CYent” without explicitly stating every time that thig usage of
the}qu&ag‘e also devistes slightly from the commenplace. In the
zrst} w0 topics we have touched upon one of those points in which one
5t remeraber not to confuse reality with the model, for o theory can
brove only statements regarding the model, not reality. )
§2.4. Let us consider two events A and B and 5 series of # observa-

tions. In each observation
one and only one of thege seibilitios
may occur: four possibilitics

i. A has oceurred, but not B,
2. B has oceurred, but not 4,
3. Both 4 and B have occurred.

4. Neither 4 por B has oceurred.

Let
et ny, ng, ny, and n4 denote the number of times in the n observations
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that the respective possibilities have oceurred, so thag
1+ ne + 0y 4 ony = 1}

Now we can form the following relative frequencies:
Relative frequency of 4 (independent of B):

n1 + Ry
4y = = @
T
Relative frequency of B (independent of 4): . \i\
gy = ", JRNEY

Relative frequency of either 4 or B or both (Wth}IQQVBD‘b we shall
denote by A + BY:
R N

7 ,\\J

Relative frequeney of both A and J’&{ﬁ\h‘mh event we shall denote

by 4B):

44+ 8)= (4)

):‘ e (5)

Relative frequency of B {mder the condition that A has oecurred
(which event we shall dcinb&e by B[A)

L\ ;
e (6)
O Bl =
b N\Y;
Relative fremirency of A under the condition that B has ocetrred:
\a"\{’
N/ ns
O\ = : (7}
R JAB) =

s
‘ 23

“5 For the six quantities given in (2.4.2) to (2.4.7) we have the
f\]{mmw relations: '

FA + By = f(A) + f(B) — f(4B) (1)

FAB) = J(A)f(B|4) = SBI(A[B). @)

Therefore, as discussed p. 13, we must demand that the same rela-
tions hold irue for the correspondmg probabilities. Thus, from (1),

we have:

I'The reason for using the symbols A + B and AB in this connection is that tho
usual algebraic rules apply to them to a large extent. Verify this.
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Fourth axiom: The probabilily thal af least one of two events oceurs
is equal to the sum of the probabilities of each event mainus the probability
of both events occurring simulioneously:

P(A + B) =P(4) + P(B) — P(4B). (IV)

This axiom is called the addition law of probability or, often, the
law of *‘either, or.”’

Example. A card iz drawn from cach of two separate, well-shuffled
decks of cards. The probability that either one or the other isMhe
quecn of hearts is then RS

N R

1/52 +1/52 — 1/52- 52 = 103/2704. , \J

Here the third term was calculated as follows: ca]cqlg@f\\qg’ the proba-
bility for both cards being queen of hearts we have 52,52 possibilities,
this being the number of ways in which we caivmitch onc card from
one deck with one card from the other. sever, of these 52 - 52
possibilitics, only 1 gives the result: qutﬂfg’bﬁ hearts-queen of hearts.

§2.6. The probability P(B|4) which)corresponds to the relative
frequency f(B|A) defined in (2.4.6) 48 ealled the conditioned or rela-
tive probability of B under thé eondition 4. Thus P(B|A) gives
the probability that B occurs.'gﬁ the condition that 4 has alrcady
oceurred. To distinguish i from P(B|4), P(B) is called the absolute
probability of B, P({iDB) is defined in the corresponding way.
From (2.5.2) we novx@es that the last axiom we have to lay down is
the following: N\

Fifth axiorm: @he probability of both of two events occurring s equal

to the product waﬂlﬂ absolute probabilily of one event and the conditioned
p-robabﬁi%oﬁ the other:
Q ~

A\ P(AB) = P(A)P(B|4)
= P(B)P(A|B). V)

SN

\Fh‘is axiom it called the multi
the law of “both, and.”
probabilities.

p]ication law of probability or, often,
It is also called the law of compound

Example. We draw suceessively
without replacing either eard. The
hearts is given by 13/52 - 12/51 =
to be a heart, we have only 51 card

are hearts. Thus the conditioned
being a heart is 12/51.

2 cards from the same deck,
probability of both cards being
1/17. Having found the first, card
3 left in the deck, of which only 12

probability for the second eard’s
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§2.7. It is the purpose of mathematical probability to make deduc-
tions from the five fundamental laws, axioms I-V. The proba-
hilities occurring in the equations obtained by this mathematical
deduction are only arbitrary numbers which satisfy the axioms inde-
pendently of the manner in which they have been obtained. How-
ever, in making practical applications of the theory, whenever the
word “probability” is used, it is necessary to think of the way in
which it is meagured in practice, le., as the number about which the
relative frequencies of the events considered are grouped—the ““true’”
value of these relative frequencies. In this connection it is oftéd a
convenient picture to think of the class of each and every result that
the observation considered can give and then to think of the proba—
bility as the “relative frequency” of the cvent in this im sinéd, infinite
clags which is denoted by such words as population, éns mble, assem-
Blage, universe, and collective.! Since, in general,\theze “relative fre-
quencics” will be of the form o /e, it is impossible, without further
comment, to give such a pieture a well- deﬁned\\.tneanmg} but we must
think of it as a sort of shorthand expresgmn for tho probabilities we
have introduced.? When this fact is remigibered, such a picture may
often be of great value both heurwtlc'ally and mnemotechnicaily,

especially in statistics. N
Fvery problem in probablhty WIH now be of the following form:
one starts from certain propabilitics Py, Py,  + -, which are given

from certain theorctical e@n§1d01at10113 or hypotheses, ic., a priori,
or given from experichée by the corresponding relative frequencies,
f1, f2, + + ¢, le., a pogteriori, or, finally, given as arbitrary constants,
the values of nhl(}h Iave to be determined later. Such constants are
called parameters. Next, by means of the mathematical theorems
deduced from'a*(ioms I-V, certain other probabilities, Py, Py', + - -,
are caleulats d az functmns of Py, Py, + - - . The given values of Py,
Py, - - wiare inserted in Lhese functions, and finally the verification
of thé\;heory congists of compating the values thuq cbiained with the
cbuéspondmg relative frequenme:,, f1 , fs’, + -, the latter being the
experimental values of Py/, Pof, -+ + (cf. Chapter 9). If, on the other
hand, P, PPy, + * - are arbitrary paramecters or depend on such, we

! We note that unfortunately these same words are also used for a finite class
of observational results, thercby cenfusing reality with our model of it (of. §1.4).
We therefore ought always to speak of cither an empirical or & theoretical popula-
tion, ensembls, and =o forth.

*Tn higher mathematics, i.e., in the so-called theory of abstract measure, this
picture can be given a well-defined meaning. By this, probability can be formu-
lated in a very general way, as first done systematically by A. Kelmogoroff,
Grundbegriffe der Wahrscheinlichkeilsrechnung.
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try to choose their numerical values in such & way that agreement
between the theoretical and the experimental values of P/, Po', - - -
is the best possible.

We wish to stress the two following facts. First, the theory of
probability must always start from certain probabilities as given in
the problem considered—just as the initial positions and velocities
of the hodies whose motions arc described in mechanies. Scecond, the
theory of probability will always give results in the form of Aroba-
bilities. Consequently, the theory of probability by its veryonature
can never teach us anything about the actual course of a sinple event.

In Chapters 3 to 8 we shall present the purely matheriaitical theory,
returning in Chapter 9 to the relation between theoryf‘aﬁd experience;
and, finally, in Chapters 10-12 we shall give Varig;d%x\p;ré(:'ticzll applica-
tions of the theory. RO\ N

A \\}
A

i‘\\'



3.

ELEMENTARY THEOREMS

§3.1. Under certain assumptions the addition law of probability,
axiom IV, redueces to a simpler form. If we assume that the eve»n(é\ﬂ
and B exclude each other {ie., cannot occur simultaneouslya w\'hich
fact we symbolize by AB = 0), we have from axiom ITI, PABY=0,
and thus axiom TV becomes \V

%
7 %3

P(A +B) = P(4) +P(B). o ' (1)

IT two events exclude each other, the probability Gf &ither the one or the
other cccurring 18 equal to the sum of the proba@'ﬂ,@'m’es of each occurring
separaiely. D

Example. In a throw with a die t]ihe\\‘p\i'obability of getting either
3ordis o\ ¢
1/6 + L= 1/3.

§3.2. If P(B|A) = P(B), 1e: :ff the probability of B ig independent
of whether or not 4 has oc rred, we say that the event B is stochas-
tically independent, ofithec event 4. ?From axiom V, assuming P(5)
different from 0, we, then find that P(4}B) = P(4), Le., that 4 is also
stochastieally indepestdent of B. Therefore we may say that 4 and B
are stochasticallynimdependent. Here axiom V becomes

&)
'O M P(AB) = P(A)P(B). (1)

If iwa\’.}vents are stochastically independent, the probability of both
oceupring 1 equal to the product of the probabilities of each event occurring
3{@@?’&56@.

4

Example. One card is drawn from each of $wo decks. The proba-
bility that both cards are hearts is then :

13/52 - 13/52 = 1/16

{cf. the example, §2.6).

When applying the theorems (3.1.1) and (3.2.1), we must always

remember that they hold true only under the conditions stated. How-
19
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ever, this is often likely to be forgotten, and false conclusions therchy
are reached. In such simple applications to games of chance as are
used here as examples, it is, as a rule, easy to decide whether or not the
conditions mentioned are gatisfled. However, in less simple upplics-
tions it is often more difficult to make this deeision, and for them it is
therefore safer to start from axioms IV and V themselves.

We wish to stress that the concepts causally independent and sio-
chastically independent are not synonymous, although in practice they
are ofien thought of ag heing identical, assuming that, if the events
are causally independent, then P(B|A) = P(4), 1.e., that the eanlts are
also stochastically independent, and vice versa. In the folonving we
shall omit for shortness the word stochastically and simply” x.‘-].'.l},' thut
two events are independent when we mean that the){@ye’étoch:1..»_:.1it:all ¥
independent. Thus, in practice, when we assume, 'tba.t”'two events are
independent, it is, as & rule, a hypothesis, the legitimacy of which can
be decided only by experiments. \%

§3.3. The theorems (3.1.1) and (3.2.1) may easily be extended fo
more than two cvents. The event that 4¢ least one of » cvents, |,
As > oo A, occurs is symbolid by A, - Ap 4 - - - 4 AL
Let the » events exclude each othemtwo-by-two, which fact we BYIN-
bolize by writing 4:4; = 0, ¢ %<& Under these conditions we ohtain
from (3.1.1) N

N Y

PUitdot - & &S PU) + P + - - 4 P, (1

Exercise. Verify thig/ ,\
¢\

: XN\

Fora general ¢hebry it has turned out to be appropriate to generalize
(1} to the casg\where we have an infinite number of events which
exclude GaQ}i other two-by-two, slthough such 2 case can, of course,
never b‘g‘ &ncountered in practice. Since this generalized form of {1}
do‘es X i’f:ﬁlo‘w from (1) we must lay it down ag & special, independent
axiofn vhieh ig ca_lled the axiom of complete additivily,

N :..\‘5?"1'?&1]1 axtom: [f Ay, 4y, « - 4o an arbitrary infinile series of cvents
\;wﬁ.wh exclude each other two-by-two, i.e., A4, = 0, ¢ =k, we have

:, 0
P (E 45) = ZP(A,-). (V1)
f=] =1

§3.4. The event that » events Ay, 4, . .
tancously i3 symbolized by 414, - - . 4 ,

even_t-s is independent of each combination of
obtain from (3.2.1):

©, A, occur simul-
If overy onc of the »
all the other events we

P(4.4, - .. 4.} =PAP{4dy) - - . Pl
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Exercise. Verify this.

§3.5. If it is certain that at least one of the » events Ay, As, - -+,
A, oecurs, we symbolize this fact by writing

Ay + Az + - + 4, =E. (1)

From axiom II we then have

PAi+Ay+ - -+ +4,) =1 @)

Furthermore, if the » events exclude cach other t-wo—by—t}xzo,\\f.e.,
if Ajdy = 0,7 # k, we obtain from (3.3.1) and (2) R

P(A) +P(A) + + -+ +PA) =1 A" @3)

This important equation s often useful as a contrdlfor the correct-
ness of a caleulation and should be applied whcne\fe\ posgible.  (See,
eg., §83.7.) _ \

By the symbol A we denote the event th;a,’q\ﬁ“ does nof oceur,  The
event 4 is called the opposite or complementary event of 4. Since
at least one of the two events A and A M0ef occur, and since they can-
not occur simultaneously, we have i our symbols, 4 + 4 = E and
A4 = 0. From (3) we then haye\ "

PAYS'1 = PUA). (4)

§3.6. It is often a uscfu}\hevice to caleulate the probability of the
complementary eventid thstead of the probability of the event 4,
itself. The following, problem is 2 historically famous example.

In 1654 the Eréich gambler De Méré stated in a letter to Pascal
that he had mdo an observation, the result of which surprised him.
Throwing l«ti¢4 times, he found that the probability of obtaining the
result 6 ‘b\\lééi.st once turned out to be larger than the probability of
obtaining the result double 6 at loast once in 24 throws with 2 dice.
In.throwing the single die there arc 6 possible results of which 1 is
févc}rable; in throwing 2 dice there are 6 times as many possible results
of which aguin only 1 is favorable. De Méré therefore argued that it
must be neeessary to make 6 fimes ag many throws with 2 dice as
with 1 dic in order to obtain the same probability of a favorable result.
However, Pascal showed that this argument is wrong; in the first game
we have to calculate the probability, Py, of obtaining at least once the
result 6 in 4 throws with 1 dic. The complementary of this event is
that the result 6 is not obtained in any of the 4 throws. These 4
throws being independent, we obtain from (3.4.1) the result that the
probability of this event is (5/6)%, since the probability of not obtaining
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the result 6 in 1 throw is 5/6. Consequently, we find from (3.5.4)
P1=1- (5/6)* = 0.518.

In the same way, Pascal found that the probability in the second Fame
i}

P; =1 — (35/36)%* = 0.401.

These results were in agreement with the observation of De Mérd rhut
Py js slightly larger than 1,2, P, slightly less than 1/2. e &\
§3.7. Bernoulli’s problem. Lect us consider an evenl, 4{1.w\11.h the
probability 8.  We perform » observations and ask for th(;,i)’rt,{hn}}i}ii‘v
£, that 4 oceurs in just r of these obsorvations, F irst, Ted us asstine
that A oceurs in the first  of the » observations ap{(’fi‘;}t in the resi.

From (3.4.1) the probability for this event is &

(1 — g, (1)

AN
However, this probability is independézﬁ of where among the »
observations the favorable eveng occurdd ) From (3.3.1) we then ohtain

the desired probability P, by multipiying (1) by the number of ways
in which we can select, » elements.dot of »

c, () _T) -4
i A l . 2 PP

o r
N\
e

NG — At
Cnnsequently\; - we have
:’\:“: P,_ = (p) a —_ b
) = 0y, (@)

N .
Tl;;z?formula 15 called the binomial layw.! It gives the probability
of: {I;e event 4 occurring just r timeg among » observations, From

x”(?,/S 1) we F-hen have that the probability, P..,, of 4 accurring at least
{imes is given by B

Pgr:Pr+Pr+1+ T+ P

L]

- Zpi - Z (:) (1 — gy, @3)

!Tn English literature ,
Hewever, being Paramet,
letters.

8 and 1 — §are often denoted »

1 7, and ¢ respectively.
o8, they must, I our terminolog b ? ;

¥, be denoted by Gireek
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Putting # = 0 into (3), we find by means of the binomial formula

v

Py = Z (3) Gl — 6= =184+ (1 —OF = L. @

Since 7 can assume only one of the values 0, 1, 2, - - -, », (4) isIn
agreement with (3.5.3).

*Example. TFormula (1) has an important physical application.
Let A df denote the probability of a radioactive atorn deeaying'iinthe
“infinitely small” time df. What is the probability of th¢ atom’s
being ‘‘alive,” ie., not yet decayed, at the time {7 We :it-’s&\gu;né that
the atom is created at the time ¢ = 0, divide the time interval from 0
to ¢t into » equal paris each of length At = ¢/», and ap})ly:'(l), putiing
p=0 and ¢ = MaAf. In the limil »— = V}-‘e{..tﬁb;t’ain the desired

probability ¥

1_11::1 (1 — NAD = fajt’\"ﬁ.; ()
since lim (1 4 2)V* = ¢ = 2718 - - :\};\:’I“l’m time interval for which
the prxo_g;ibilit}' of decay is 1/2 is o&‘l;l;d the half-life and from {5} is
siven hy T = In 2/x. N

Excrcise 1. A battery of guns;:}{f has for each ghot a probability of hit 3/5;
and another battery of guns, B{has a probability of hit 1/2. A fires 2 shots, and
B 3 shots. Find the probabilfj\ies of exactly 0, 1, 2, 8, 4, or 5 hits. Check that~
their sum j= equal to L. W

Excrcise 2. Applyh(3)'to the golution of De Méré’s problem §3.6.

%$3.8, Bayes@heorem. In axiom V we may also think of P(4)
and P(AB) as being the known quantities; then ¥V may be writien
N S/

P(4B)

) (1)

P(B|4) =

\*w’:
O
assfuhing P(4) = 0.
Example 1. The probability of an atom’s still being alive at the
time ¢ -+ # (event B) under the condition that it is alive at the time {
(event A) is given by (1) and (3.7.5)

8—->\{t+w e
P(Bl4) = i = e o

Thus the probability of a radioactive atom’s still being alive at time
t' is independent of its age, a fact in contrast to every biological process.

% Articles marked with an asterisk are of a more difficult nature and may be
omitted in a first reading.
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Inserting P(4B) = P(B)P(A|B) in (1 ), we find

P(B)P(4|B
P(l4) = LOPAB ;(j)l g

Let us now consider » events, 4y, Ay, - . - 4,, which exclude cach
other two-by-two and of which at least one ocours with certainty; in
symbols A4;4, = O, 75k, and A1+ A4 - . + 4, = £ Fue
thermore, let X be an arbitrary event—not, necessarily one of the eveonts
Ay, Aoy oo o A, Tt then obvious that, together with theevent
X, one of the ovents Ay Ag, - - - A,, must oceur; that as, 1t X Ly
oceurred, then either the event A.X or the evont Ao X L509 or .1,X
has oceurred; i.e., symbolically U

X=X 44X 4 - g g0 )

Since the events A; and A excluded each othé:r;\fgr 2 5 k, the snme
applies to the evenis 4:X and A X, Thug foin (3) we get

P = PUXY + PLUT) £O7 . 4 P4,X), (4)
Inserting P(d4,¥) = PANP(X[A,) m(\\‘@ we get

PE) = PLAYPEIARY - - - ¢ p(a)pxly ). ()
Choosing, in (2), 4 = y and B 4, and inserting (3) for P(X), we
finally obtain A ~
P(4{x) = BAIPE (40 PAIPX]A)

PSS T PP + - - PAPX[A,)

¢ B,

which {5 called ]%’a@fri;s’ theorem, ©

To SUmmar{ze: A cortain event X has heapn observed, and we know

that it hags}}ccurred 48 & consequence of ong of » ovents 4 Lot

A, whjck\eficlude ench other two-by-twa. The events Ay, ., |,

are called the “ogygeq™ or “hypotheses” of X, and (8) is said to give
the:zugrobabﬂity of the event A; after the event X has oceurred.

(2)

o

\)Example 2. Let ug apply Bayes’ theorem o the example, §1.3.

The three hypotheses ipn this cage are the three bureans, 4 ~ Ay,

B = {12} ¢ = Az, and X ig the event “g¢ least ong of the thrée drawers
coniaing a gold con, Thus we have

Pdy) = P(ay) =Pldy) =173,

Furthermore we have P(Y|4 1) = 1, since both dra

] ; A wers in buregy A4
contain a gold oom; P(X|4,y) = 14, since only one drawer in bureau B

contains a golgd o0in; and, finally, P(X]|43) = 0, since none of the
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drawers in burcau € contains g gold coin.  Inserting these numbers in
(0} we get

1 .
PB-!_( = - L——————:—
B = T T

n agreement with the result found in §1.5.

i)

Exercise. Write down Bayes’ theorem in the case X = Z A, m << v,

i=1

o &\
“§3.9. The multinomial law. In Bernoullis problem, §3\%: we
considered the possibility thaf in each of » observations thereghele only
tWo possibilities, cither the event A occurred or it did(ot “oceur,
More generally, one also meets the problem that in cachswf » observa-
tions we have more than two possibilities. Let us, fare consider the
case in which in each observation, one and onkg~onc of % mutually
exclusive events occurs: 4, 4 2 A, Thhew¥e assume
Ar+ Ayt - - + 4, = E, Ay =0 foris=j (1)
Lot us denote by 6, = P(4,) the probz@iﬁ:tf that 4; oecurs., Trom
i1} we then have O
OrF 0+ a3t 6 =1 (2)
We now ask for the probahilit ';‘:P:l,,,?,__.r,k, that among the total
e re o e = obsefi;ations the event 4, occurs r, times,
Ao 7y times, - « - and 4, # times,  This composite event may ocour
n & number of different '\s-’&}s corresponding to the number of different,
permutations of #, 4 1"3,\\2"/12’5, ©or s and g Ag’s. Trom (3.4.1) the
probabilivy of each"oi}e of these permutations is
20T gy g ®
From (3.3.1}.\}%}"%}1911 obtain the desired probahility Poorpeir, bY
mulliplyin \icg) by the number of ways in which we can scleet 7,

elementg\hy elements, - - - | and 7; elements out of a total number of
"Lt et - - 4 7p = »cloments.  This number is given hy
IS,
\ ) v!
4 —_————— s
?‘]!'?‘2! oo ?‘k!
Consequently,
? »! LY. i
ooy = e B -

rilral « o ol

Tt o dr =00 (4)
This formula is called the multinomial law, We see that it contajns
the binomial law as a special case for & = 2. By means of the multi-
nomial formula and (2) we have in agreement with (3.5.3)
Prprgrmy =@ F 82+ - -+ ) =1 (5)

R R
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RANDOM VARIABLES AND
DISTRIBUTION FUNCTIONS

N

§4.1. In the following we shall dea] exclusively with lzaljdpm phe-
nomena in which the directly observed regult is one or ngore numbers, !
A quantity which can be determined quantitatively and gliich in differcn
obsersations of the same calegory con assume daﬂqrfe}& talues shall be
called @ random variable, symbolized by x.* Thus'the letter x not only
symbolizes the quantity considered but alsonthe :Way in which it has
to be measured, the category (cf. §1.6), diyamples of random vari
ables are the rosult of 5 throw of a die; ¢ho weight and height of one
of a group of soldiers; and the range, ek\;\}at-ion, and azimuth of a shot.
In the last-mentioned oxample, x is notdefined before the experimental
arrangement hag been specifiod, i:.é‘,;lﬁhe type and position of the gun,
the composition of the powderythe weight of the projectile, and so on.
At {irst we shall assume thgi*the random variables considered are
one dimensional, Le, thj{t they can be characterized by one number.

§4.2. The proba-bi.}itj%that ¥ assunes the value ¢ wo denote hy
Pl =) and the prbBéibilit-y of & assuming a value in the interval
@ <t=bwedendte by P(g < « < b) or simply P(q, 6). If we know

{~1den though the directly ohserved result may not he g number, we can always

Axinbolize & resylt by a mumhber, For instance, in the example stated in §1.3

\-‘e’ can assoviate the number 1 to the result “male” and the number 0 to the result
“female.

* It is also ealled g statistieal or stachastie varisble or & variato.
variahle aléatoire; in Gorman, zufan; gc Grisse,

2 P(1) is alsg called the sum funetion or the cumulative, total, or integral
fiistrihlztion function, in order to distinguish it from the function @(t) to he
Introduced later {ef. §4.4). French, fenction des probahilitds tolales; German,
Verl:eilungsfunktion. Often the distribution funetion iz denoted by F(), but

we shall use this fop the forresponding empirica) funetion (of, Chapter 10} , for the
teasons discussed op P9,

In French,

26
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tion which for all values of t is equal io the probability of x < ¢
) =P(—0 <x Zt) =P(—w,), (1)

If at the same time we consider several random variables, «, y, -
che corresponding distribution functions may be written ®.(¢), 3,,(t)
From (3.1.1) we have for i1 < &

Pl—~w, by) = P(— o, t1) + Pt ta),

o &\
and, inserting (1) into this, we have, due to P(f1,42) = 0 \ A\
() = P(1a). N 7 (2)

Thus the distribution function ®({) is a nev er—decre%mg\ﬁmctlon

Example, A shot from a rifle has the probability, %{f*hlt‘umg of 1/2,
We fire five shots. The random variable x issthe/number of hits.
The probability ol P(x = r),r = 0,1,2,3, 4, 5, ,'Q\given by the binomial

law (3.7.2}), and thus \"

0 for g\-\;}ﬁ <ti<0
1/32 for &8¢ 0O =21 <1
6/32 fory ™ 12t <2

() = {16/32 _dor 2<t<3
26/32\ for 3=t<4
31/32\ for 4 =2¢<h
1\ for 5=t < o,

The praph » = Li).(i).’ot this function is shown in Fig. 2. Random
variables, such a#the one montioned here, which ean assume only
the values # = @)2, - » -, » with the probabilities P, given by (3.7.2),
are said to E\é,ﬁiilomiullw distributed.

We nére\ in the last example that the distribution function ®() is
Lon:pmumus for all values of { for which the probability of # assuming
Lh\}aluc is 0 but that it is disconiinuous in the other points, with
jumps at these points equal to the probabilities of x assuming the eorre-
sponding values of . Purthermore, we notice that at a discontinuity
point &(1) i equal to its limit from the right. Finally, we note that
(1} has the limits 0 for ¢ — — = and the limit 1 for t — <.

Quite generally, it can be proved from axioms I to VI that every dis-
tribution function has these properties:!

Hm &) = lim P{—= <x =1 =1, '3

b— = =

' Bee, e.g., Cramér, Random Variables, Chapter 1L
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Le., ®{f) approaches 1 without limit for f — =

im () = lim P(—» <x =1 =0, (4

= i— - &
Le., ®(t) approaches 0 without limit for £ — — w0l
| o Ime = s, (1> ) (5)
tty

Le., ®(f) approaches P(ty) when ¢ approaches ty from the -r-a'g}az‘-éa-n.d
side, N\
lem: (2{o) — 8] = Plx = ¢;), (1 < ) CON )
—g {“\; ”
Le., the difference (i) ®(t) approaches P(x = to) when Fapproaches
to from the left-hand side. Thus, if ¢ is a contir }L@"})oint for the
function (¢), we have P(x = ) = 0. RS

2 N7
Nt N
L= NN
L\
O
ne
4 \ WA
N\
I 4
R e e e
xo\\.:
NV Fig. 2,

Thg@fi;bution function ®(£) of the random v

in p{:}tg’-tice will, as o ryle, belong to one of the
L &(2) is piecewise constant (as in Fig. 2),
{}I - ®{t) is continuous and biecewise differentishle with a continuous
derivative,

ariables encountered
two following types.

In these cages we speak of discontinuous and eontinnous distribution

funetions respectively, In hoth cases the analytie expressions will

assume only finite values, If can
e probahility, wa have lim &) <
f— =

¥(=) =1 andt_h:_tfm@(g) =®(—%) >0 This cap ocowr, e.g., when we go
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often contain one or more constants, called parameters, which we
shall denote by Greek letters, The numerical values of thess param-
cters are in cach single case estimated from the ohservations, so that
the theoretical distribution describes the obscrvations in the best way
{ef. Chapter 10),

$4.3. Discontinuous distribution funetions. We say that a
distribution funetion &(f) is discontinuous if it is piecewise constant,
by which we mean that there exist certain points

N\

oy <ty <<ty <ty <+ - A D

at which &(f) makes positive jumps {
T e-2 eon ¢o @1, e :x‘\\ '

and that ®(7) is constant between two consecutivewsalues of t.  The
values {; are often called the spectrum of theyrandom variable x.
If the spoetrum consists of the values 0, 1,20 - - ; it is more con-
venient to write siraply < instead of 4. \\;\:

Thus the function 4 = &) is a st‘ef)}unction lying between the
lines » = 0, w = 1 and having stepsiof the heights ¢; at the jump
points £, The number of steps camibe either finite or infinite. From
(4.2.6) the height of the jumm\, is equal to the probability of x
assuming the vaiue #;. For gy other value of ¢ we have P(x = #) = 0
due 1o the continuity of #{)'at this poin,

Now we have L\

£ B
..:\‘.: o = B(tp) — ®t,—1).
> =
Letting ¢ —.\\x-*oo here we obtain from (4.2.4)
3 \ e
QP B = ) o &
' 4 = — =

atd next letting » — = here we obtain from (4.2.3)

._i ¢ = L | | (2)

Example 1. The simplest example of a discontinuous distrib‘utiqn
is that in which the random variable x assumes with certainty one
de_ﬁnite value only; let us call it g. Thus the spectrum comsists of
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only this single value, and we have
by = p
o =Plx =p) =1 (3)

0 for <

({:(,{):P(xgt)=e(t-p.)=,l for { = g

Here we have one parameter, ». This distribution is obviously nre-
cisely that which corresponds to a cansal description {ef.. &\Z%},
Therefore wo shall call it the causal disiribution. A o

Example 2. An example of discontinuoug distributiong Gfton met
In practice, espeeially in biology, is the binomial distriblition wlich
we have considered already in the example, §4.2, fi\the general
binomial distribution we have from (3.7.2) and @3‘4)

= 0; 13 2; I
o\
o= Pe= () 51 @
1 N

. NV
& Ke
Z:.,r pr =1 ’:3.’ v
T={) * v

Iere 8 and » are the paramet.ers;”vlﬁﬁt In most cases only 6 is unknown,
v being given by the prob]eQ\itself.

AI‘l random variable dehoting a number are also examples of dis-
ct.)ntllnuq.us filst-rlbl{ﬁitﬁs. In the following we ghall give three such
distributions whlgzh: are important in many practical applications,

N4
Examplie 1:.,\',In Poisson’s distribution the Bpectrum consists of
all non-negative integers, and the distribution is given by

’\ %=0; 132;
Z”\’.'L' pi
@ PE=ETE s a0 (5}
\/ 7

]

k2

Ll
T
- I3 -
e“zﬁ=e et = |,
i=0

often met, ag shown by the following

i=0
where 1 is 5 Parameter,
Poisson’s distribution ig
examples,
E.xampl.e 4.. Let the random variable x be the humber of calls
during a time Interval ¢ gt g telephone switchboard, If we assume
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(@) that the probability of a call in the time df is proportional to dt,
adi, and (B) that the calls are independent, x is Poisson distributed.

Denoting the probability of ¢ calls in the time # by P.(t) we have
that Py(¢ + di) is equal to the produet of the probabilities of ¢ ealls in
¢ and O in @ plus the product of the probabilities of ¢ — 1. ealls in t
and 1in df.  (df being o differential, the probability of more than one
call in dt is of higher order and therefore negligible.) Therefore, from
our assumptions, we have

Pt +dy =Pi()(1 — ndt) + Pia(drds, &
from which O
dP (1
LD sl — P, O e

It is easily seen that the solution of this infinite & stse\\n of differen-
tial equations is uniquely given by Poisson’s formuldy ‘with u = ¢,

e 0 I TN
P =S P = (TS0 ™
O O

(Putting Py(t) = “== (1), (6) showsyhat £(1) is uniquely given by

il \
¢™ {or the inilial condition givel}iﬁl (7).) The formula (7) is of great
importance, e.g., in designing teléphone switchboards.!

Fxample 5. Poisson’s distribution given in {(5) bas many other
applications since the assimptions () and (b) can be carried over to
other fields. “Thus (5) alsd gives the probability of finding 7 radioactive
atoms docaying in tHeXime intorval ¢ ; the probability that ¢ cosmie-
rvay particles tripra@eiger-Miller counter in the time interval ¢; the
probability of s#tore’s selling ¢ pieces of a certain type of merchandise
in the time idiérval ¢; the probability of ¢ cars passing a certain street
in the tim& Snterval ¢; the probability of ¢ suicides occurring in the
time in\téfi'al t; the probability of finding ¢ corpuscles within the
ﬁeldu}f varea ¢t of a microscope, and so forth,

daraple 6. Pascal’s distribution is given by

i=01,2 -
_ ! s )i >0 )
‘Ps_l_i_‘u 1+IJ«, &
~ 1 S PR 1
P = = . E]_,
Z 1-—|—,u__0(1+.1£) 1+g ] - E
" = 1-4p

! 8ee, e.g., I'ry, Probability and s Enginvering Uses,
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where 4 ia a paramster. (In the theory of cosmic rays this is also
called Furry’s distribution.)

Example 7. Pélya’s distribution iz defined as follows, u and 8
being parameters,

?:2031:2}"'!

po = (1 4 guy~VF, 8>0,u>0
E_NI04+B - (4G g O
; N (=8N [ ~6u \' o7
iy e
=1 i==0 : 1 +B“ ':t\\ 3
Bu NV N
= —wefy = 0
1+ g ( T ﬁ”)

T4

T 7 .\ .
Here we have used the general binomial Jhéorem and the fact that

W)
W148) -~ (L4 6 — 1)@ (—zfﬁ)_
%

1 N (=8

(Because of this relation Pélya’sedistribution is also called the negative
binomial distribution,) 7 -

One should notiee that.the Pélya distribution contains two param-
eters, p and g, in cont-r;a‘rs\x 0 both the Poisson and the Paseal distribu-
tions which have only one, . Tt is therefore more flexible than these
two distributionssybich are, incidentally, only gpecial cases of the
Polya distribution:” In fact, from (9), we find that passing to the
limit g — O.Wp»)fjtain just the Poisson distribution

\\ gH %_ for =9
- "\ ' 7o e_'“:—f for =1 (103
) 3

4
For 8 = 1 we obtain just Paseal’s distribution

1 m i
{015:1— 1 +#(1—+ ,u.) (11)

§4.4. Continuous distributions, Strietly speaking 2ll random
variables are discontinuous becauge in practice we ean only measure
multiples of the smallest unjt that the Imeasuring apparatus can meas-
ure. However, if this unit ig very small compared with the variations
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of x observed, we may to a good approximation abstraet from this
fact and treat x as a continuous variable,

We eall a distribution eontinuous if 2(f) is continuous everywhere
and is piccewise differentiable with & continuous derivative, &'(f) =
o{t) (i.e, (l) exists and is continuous except possibly at certain points
which oceur at most a finite number of times in any finite interval).
Thus we have

L@@&:@@p-ﬂmzpm<xg@x XY

i.e., the probability of x assuming a value in a certain mter\-'a.l:i’s;gjven
by the area between the curve u = ¢(t) and the given interz&fi;l on the
laxis.  The funetion ¢(f) is called the probability density of x or
its differential distribution fonection.! All valugsﬁﬁf ¢ for which
oft} = 0 are said to make up the spectrum of X~ Bince ¢f) is the
derivative of a never-decreasing function, () 2\0Yor all values of &
If  has only one maximum, the distributionis.ealled unimodal, if
two, bimodal, and so forth. In (1) letting“; ~» — % and putting
{2 = { we oblain from (4.2.4) N

a(t) = [ Bt a, @)
which is analogous to (4.3.1), In(2) letting { — = we obtain from
(4.2.3) ¥y

N .
RCE R ®)

which is analogous t0'4.3.2).
In (1) putting 843 Fand ¢, = t + At we have

- +
AU PG Ay = [T e

which by m(}a.ns of the theorem of mean values gives

o P, t + A) = o(§) AL, 4

in \}hi::h £ lies between ¢ and ¢ + AL

Because of (4) we can say that () di gives the probability of «
assuming a value in the “infinitely small” interval £ to t + dt. We
Wish to stress that il is e(t) di and not () itself that gives the proba-

te(t) Is also called the frequency function. This exprossion is, however,
Somewhat misleading bocause ¢(f) refers to the theoretical model, not to the
observed frequencics, Troneh, densité de probabilités German, Wahrschein-
lichkeitsdichte. Unfortunately, the terminology is not vet fixed, so that one
has 10 be careful to see whether *“distribution funetion”™ applies to the total or to
the differentis] distribution funetion,
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bility. Therefore one often gives the probability density in the form
d® = o{1) di, (5)

which is called the probability differential. Furthermore, we stress
that in a continuous distribution we ask for the probability of x assum-
ing a value between ¢ and ¢ + df and not for thoe probability of x assum-
ing ezactly the value of &. We shall now give some examples of con-
tinuous distributions. “
: . NN
Example 1. One of the simplest continuous distributliong 4 1he

23

rectangular distribution given by o

O f t " :‘; s..:
; ) or :g\\cz \

do(t) = p() dt = a i ¢ for _&Xi<g, ()
N ¢S
0 f .
AE <
in which @ and 8 are two parameters, Since (1) is constant, » is also

said to be wniformly distributed Withg’ﬁ‘ the interval (@, 8). Check

that f-m e(f) dt = 1, and find CI)(af)~ ‘Draw the graphs of off) and
®(f). Show that keeping « fixedhind letting § — o, B() — e(t — a),
in which e{{ — «) iz the causabdistribution given in Fxample 1, §4.3,
with & = p. Q

Example 2. Let themgndom variable x be the life time of a radio-
active atom. Since ¢helifetime is a non-negative number, we have

PEsh=30) =0 for —w <<,

A\ N/
Ifx =t (f,fnii“é 0} this means that the atom must have decayed at
& Previo s::ﬁ.gi.ne. Since the complementary event is the event that
the at"Q}Q\h still “alive” at the time ¢ we obtain from (3.5.4) and (3.7.5)

N

:"\~:..' Plx =8 = Bf) = 1 —

~C for D=t < o,
WV
0 Lo

(1) = 1) di = [O'd‘5 for ¢ ) 1)

€M N di for 0

A A

Check that f_ . ¢ dt = 1, and draw the graphs of ¢(f) and &(f).

We could also have obtained the result (7) directly, sinee it gives
the probability of the atom’s decaying in the time between £ and ¢ - dt.
However, this probability is the product of the probability of the
atom’s still being alive at the time t, which from (3.7.5) is ¢, and the

probability of the atom’s decaying in df, which, due to our assumption,
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is M di {cf. Example 4, §4.3), which shows that (7} also gives the dis-
tribution of the time between two consecutive calls.

Example 3. The most important digtribution in practice is the
normal distribution given by

_ (=g’
da(ft = ft) dt = exp[ v-—-lﬂ-] di (—w <{< «),

L
(8)
in whicli g and ¢ are two parameters. The factor 1/‘\/% oy 1:, c\]led

the normalization factor, Lo, that fa(,tm which makes f () di

== 1. (We shall prove this in the detailed discussion j ind Chapter 7.)
Draw the graphs for »(f) and ®(¢). Next show that, h)\\lettmg e — {0,

T

O(l) > e(f — p) ag given in Mxample 1, §4.3. \“
Example 4, Cauchy’s distribulien is giv & by
1 >

T (t —

1 N
Abit) = (i} dt = — )2 t\ (—= <t < =), (9
1+ —==0
D! \ ¢

¥

NG
LN
N

in which g and a are two pammﬁet@rs Check that f_: e(t) dt =

and draw the graphs of o(f) agld‘ ri:-(i) Show that, for &« — 0, (f) —
e(f — u), as before.  This. ‘(sh-,tributmn ig found, e.g., in the intensity
digtribution of spectr:l ‘1{}189 and in the theory of 3catier1ng and eap-

iure proceszes of atomm nuelei,
Example 5. L@pi ace’s distribution I8 given by

\ o=
o gr} olhdi=—¢ & di (—w» <1< @) (10}
) Qa
O )
in wh'\cfh i and « are two parameters. Check that f_ L edt =1,
xh'i:,w the graphs of o(f) and ®(). Show that, by letting o — 0,
¢> "— et — ) also,

Excrcise 1. Let %1, %z, =+ -, %, D8 » independent random variables with
the same distribution function ©(f), The largest number among f-h(-.s x's 18 again
4% rundom variable. Show that its distribution function, $me(t), 18 given by

DBos (£} = wB"LE () di = dP7(EL (11

*FExample 6. Since it ig inconvenient in proving general theorems to repeat
analogons proofs by treating discontinuous and continuous disiributions separately,
It v often useful to regard the continnons distributions as the general case contain-
ing the discontinuous distributions as special hiniting cases. As shown in the
brevious oxamples, the simplest discontinuous distribution, the cansal one, ®{f) =
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e(f ~ ), may be obtained in a variety of ways as a limit of g continuous distrify-
tion. Diract has thercfore introduced a fletitious function giving the probubility
density,” 8t — ), of (t — i), a funetion which obviously is O for all ¢ # p and
e for { = g4 in such a way that the whole integral iz 1:

Mt — 5{; —-#) = 5(# '—6)

dt
_ {0 for [ #p (19
- {w for f =g s
" T o &
f 8(t-,u)d£=[# Yo — e -1, \\\
- H— &

in which ¢; and ¢ are arbitrary positive numbers, Of course, such 2 {Mitmniion
does not exist mathematically, and itg infroduction iz therofore a\pbr-rizorons
procedure. However, first, it is only a shorthand expression fosthc result of a
Iimiting process, and the final results obtajned are always cm\(}ct : and, second,
the methed may he made rigorong by means of g more complidated concept, the
Stieltjes’ integral (ef. §4.7), Consequently, the -functich_of Dirae, being much
more “anschuulich” and being more convenient In application than either the
strict limiting processes or the rigorous, but legy kx\bw'n, Sticltjes’ intrgral, has
been widaly adapted, egpecially in quantuym thedr/ where “vigor' of o malhe-
matical tool is more important than jtg “rigns,“f\\:Howcvrzr,
applieation demands o eertain taet in ordor i@ load to the

“Exercise 2. Show thay any discontinuony distribytioy fun

it is obvious that its
correct final resylts,
ction may be written

X
N

o) = .}2&“%6(5 = i) (13}
; A, "-:. —
) \
Next show thag by meaus’o?\t-he Dirse s-funetjon this m

. N, e\ a¥ be written as 2
continuous distribution With\prGhability density:

,Q‘?’,.(f)'=soft)dt= Z o 0t — u) dr. (14}

- i= — =
*Exercise 35."‘} Prove the following broperties of the 5
O -
& T a3)

NS |
fnn«&py,‘t:unt-muous function ff).
) 3

-funetion :

N

4 ]
f_ w S = BB = ) gt =8{u1 — pg) (16

and, by meang of partial int-egration,

[ 0wt~ i~ g, (17)

§$4.5. The probability density el(t)
well ag g simpler meang for the study
TTVA M. Dirac, Princinles aof ¢

is, when it exists, a handior as
of a random varizble than the
wanbum Mechanics, Pirst edition, London, 1930.
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distribution function &(¢). However, it must be remernbered that the
distribution function is the general concept which can always be
applied.

Most of the random variables found in practice will have purely
discontinuous or purely continuous distribution functions, But there
also oceur in practice random variables which have mixed distribution
functions, i.e., which have both discontinuity points and continuity
intervals. Thus in atomic theory the energy of an atom is a random
variable and its spectrum often has both a discontinuous and .a/ton-
tinuous part. As another example we may mention the fp]l(}ving.
A 40-year old person purchases a so-called 25-payment life-policy,
by which it is understood that a certain amount of money.ds paid to
him when he reaches 65 years or to his benoficiary irr@é:giiat-e]y after
his death. The time interval between the day on4vhich the policy
becomes effective and the day of payment is‘gbviously a random
variable with a distribution function equal to zers, for ¢ < 0, increasing
continuousty from £ =0 to { = 25 and jgn@ing discontinuously at

W

£ = 25 to the value 1. 3O

N
Finylly it must he mentioned that t-heurpﬁca1137 we have still another type of
disgtribution function in which ®() is cdpbifuous everywhere, is differentiabie
“almost” everywhere with (5} = 0,ebul nevertheless increases from 0 to 1.
Such “pathological ” distributions axgyof eourse, never found in practice.

§4.6. In a convenient andoften applied mechanical picture we can
say that a distribution fghetion defines a certain mass distribution on
the z-axis. Thus we Hink of this axis as being an infinitely thin rod,
the various parts of Which are coated with mass of varying density.
In addition, at c,thfaih isolated points, mass particles are concentrated,
Putting the totglamount of mass = 1 and denoting by ®() the mass
lying to 4 €I¢tt of and including the point ¢ we sce that ®(¢) has
exactly the. same properties as a distribution function, Thus the dis-
contindfity points of ®(f) are the points ab which mass particles are
Si‘r.«a@t“gd. In the continuity points the mass density is given by
ti)“{sz)‘ = ¢({). It iz from this mechanical analogy that the expres-
ston probability density originates. Often one also speaks directly of
probability mass, meaning the magnitude of probability. )

*§4.7. As alrcady mentioned it is convenient to treat discontinuous
and continuous distributions in the samc manner. The method of
Dirac indicated in § 4.4, being convenient but not rigorous, may be
made rigorous by means of the so-called Stieltjes’ integral, which is a
simple generalization of the usual integral.®

! Bee, e.g., Titchmarsh, Theory of Functions, §11.72, London, 1932. .
% For & more detailed discussion we refer, e.g., to Cramér, Mathemalical Methods
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Let F(¢) be a never-decreasing real function in the interval ¢ L% b,
and let g() be real and continuous in the same interval, We divide
the interval from « t0 b into n parts by means of the division points

G=tyg<i < Ly <y = b
and choosc in each of these subintervals an arbitrary point
Ev, f;, é Ev g. f-p+1-

. . . o. €\
Then it may be shown, exactly as is shown by ordinary inteurals,
that for a sufficiently fine division the sum SO\

it —1 C )

EP) F i —F i, &
209( (Fltuyn) — F(1,)) RS

X
¢ N}

will deviate by an arbitrarily small amount Bsh a ceriain limit.,
This limit is called the Stieltjes’ integral and $s"denoted by
5 .’:{..
FIRN
ING PGS (0
\

_ Exercise 1, Show that, if () has a .cg.ﬁrp‘:iuous derivative, then the Sticltjes’
integral reduces to the ordinary Infegral ™

B oL
ﬁ o() R = f * WP d @)
n\ [

Thus, especially if # (£} = ¢, (l’N'}duc.cs to the ordinary integral of g().

’ Exercigse 2. Show that ﬁf\E{t} is a step-function with the step-points ¢; and sleps
Fi {ef. §4.3), then 1he §ffé§hes’ integral reduces to th

£ S1m
PR, b
2T [aoarw = Y o, ®
) x;\,.. £

It mayga:gﬂjr. be shown that all elementary rules for definite integrals

also hol;( r Stieltjes’ integrals. Next the integral
\”\”\ : [ awarg cY
is¥detined in the usyg] way. Ifir (1) we put glt) = 1 and F(1) =

®(¢), it follows from (4.2.3) and (4.2.4) that

[ arg <1, 5)

This single formula obvicusly contain, th )
and (4.4,3), 8 1he separate formulae (4.3.2)

Statistics. & . 3
of Stalistics, 375500 D. V. Widder, The Laplace Transform, Chapter 1, Princeton,

1946
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However, although the Sticltjes’ integral is the ideal tool in proba-
bility, we shall not apply it here since most students of applied mathe-
matics are not yet familiar with it.

#£4.8, Byafunctiony = f(x)we understand a new random variable,
¥, assuming the value f(£), when x assumes the value ¢, If the condi-

df

tion a > 0, or — < 0, is satisfied for all ¢ we have

dt T de
Ply = f(z) £ J{t) = @)
= &,(u) for %‘{)\\8’\
P =PEZY = 9piy = ) 2 £0) = ) i«%s“i ]
=1 — &, (u) f({i’;‘ ~g < 0,

Differentiating on both sides we find in both cagés thas

dd, = ¢ (f) di = m(i(u})ﬁ du
O

= wy’{t\tj du = db,, (1)

This formula plays a very 1mp03tax‘rt role in many practical applica-
tions of probability. ‘v,;

Example. Let the rapdom Varlab]e be the numerical value, =, of
the velocity of a moleedls With mass m in a gas at absolute tempera-
ture 7. The dlsmbﬁ{mn of v is given by the Maxwell-Bolizmann

law: RS

‘,o

- m
dd, q\(p@(ff) di = atZe™dl, 8= 0T 0=t < ) {2)

9 M
in whic ’%15 the physical constant called Bolizmann's constant and o

1z the‘i;mrmahzatloﬂ factor. (Cf. Exercise 3, §7.4.)
m{b.e “distribution of the kinetic energy, E Yme? = yv”® ,is then,

(1), given by
. N i '
APy = ¢ulu) du = — ue™ WM — e dy = e du
Y 2V yu ]
0=5u<w), @)
where o' = a/24" and g’ = /v =1 /ET are two new constants.

Exercise. Show by means of Appendix 1 that

o)
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, 2 f1\®
5

§4.9. We shall now extend our formulae to two- and many-dimer-
stonal random variables; i.e,, random variables whose specifications
are given by two or more numbers. Since all concepls and formulye
may immediately be generalized from two to » dimensions we ghall
state them for only two dimensions, denoting the random variai;)le
5= (x, %) \<

Example. If in tossing a coin we denote heads by 1 and g;ia:ihi by
0, and if we play with 2 coins, % can assume the valies (1,dy, (@, 13,
(1} 0)! and (0? 0) N

_*

and thus

Ii, as in this example, we are investigating the d‘i'éﬁributions of 2
one-dimensional variables it is an obvious idea 4pirterpret them as
components of 1 two-dimensional variable, Weréan then interpret
x and y as cartesian coordinates in & plane anddsk for the probability
of (x, ¥) lying within a given region in thig‘:plane. The mechanical
picture from §4.6 may be generalized to this case immediately assum-
ng a mass of total amount 1 spread.qutt 'continuously over Lthe plane
or concentrated in eertain points orines.

By the joint distribution furigtion ®(t, ), or simply the distribu-
tion function, of g two-dimef{sional random variable » = (%, ¥} wo
understand that function .WBch for all values of # and u is equal to
the probability of x < fend ¥ =

B, WP~ <y —o <y <), (1)

. N | .
. tAsV 1In f,he F)I{P\dlanI}SIODaI case 1t may be shown from our axioms
0 VI that the¥ollowing natural generalizations of (4.2.3) and (4.2.4)

hmdmmgt§c“
AN Lim &, ) = 1 (2)

e \ ¥/ ==

\ \‘ U—r =
:_l,if“w Y, ug) = 0 3
lim &), u) =0 (4

for any fixed to and u,,
Exercise 1. Show that for g > @ and b

>0 ] ]y
8¢ 40w > B0, 00 00 2 5 v1b) s o we have &(f, w 4 5} 2 D, 2);

Ut B Bt +a,utb) > et +a

. .
; pH;;E)’ 1t Is 2lso assumed that » and ¥ can assume only finite values (of, footnote
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w; ot o, u b)) 2 e u),and B o, u b)) — B¢ +a,u) 20w +b) —
Bif, uj. Nextshow that Plar <x Saz, by <y = by) = ®{gg, ba) + &lay, b)) —
Tlay, ba) — ®lag, b1).

Exercisce 2, Prove that

Plx+y>a-+b) <P >a) +Ply >b)
and
P(s +5] > a+0) SPaf > 0) +PCy| > 1,

Corresponding to our ireatment of one-dimensional variables~we
shall also treat here two types of distributions, the discontinuqué%nd
the contintous, separately. ::'..’x'

§4.10. Let two series of numbers be given: O )

<l <l <t <l <o N’
<u_g<u_1<uo<u1<ug~<':;\- ..

We say that the two-dimensional random:?&r‘fable 7 has a discon-
tinuous distribution function if the pos\'bh} vahies of 5 are all of the
form (¢, w;). Let the corresponding Q’?}?ﬁabilities be ;. In every
rectangle (7 <3 < fpp1, Uy £ u < Wai1) the distribution function of
z will be constant and cgual to 8

<N
N

N\ 2
DLy, Weh= Z Z @55, (1)
e\ R Y Py

¢ ’x\,ax
from which it follows %y\’mcans of (4.9.2) that

A\ -

o’\: ’{\"‘: Z Z ¢‘£j al 1 ) (2)
O i=— % jm
N
Example. Let us assume that z can have only the values (0, 0},
(2,..\11},.’(1, 2), and (3, 3) with the respective probabilities, 1/4, 1/8,
348, and 1/4. The graphical picture and values of the distribution
function are shown on Figs. 3 and 4.

Exercise. Find the distribution funection of the varinble in the example,
§4.9.

§4.11. The probability that x assumcs the value {; independently
of which valuc y assumes is symbolized by ¢; and is given by

¢ = _i @ij- (1)

i ]



42 RANDOCM VARIABLES (Crap. 4

0 IR 3/4 3/4
2 N
o / /
¥ (N4 /4 3/8 3/8
\\ f /
2 a4
O | .

9 14 1/4 1/a 1/a

Nl
O
|\ 0 0 0 0 )
AN
& N,/
/ Fia. 4.

Analogously, the probability

of ¥ assuming the value »; independ-
ently of which value y 5

S8Umes is symhbolized by ¢ and is given by

Py = . S Did. (2)

= .
The distributiong @i and ¢
of x and y respeclively.

The conditioned Probability of & assuming the value ;

are called the muarginal distributions

under the
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assumption that y hasg assumed the value u; I8 symbolized by il
Analogously, e;; denotes the conditioned probability of y assuming
the value u; under the assumption that x has assumed the value ¢,
From the multiplication law, ¥V, we then have

i T PP = @504 (3)
Exercise 1. Show that
cili= ) ei= L @
f= — w f=— 1= '\\’\

If, for all values of ¢ and j, ¢5; = ps, which from (3) implieyz;; =
@5, we say that x and y are stochastically independentior shorily
independent (cf. p. 20), and (3) then reduces to \~

N
©sj = @05 RO\ (3

Exereise 2, Conversely, show that, if (3) holds trl@, #and y are independent,,

Exercise 3. T r and y are independent, show tHits = z + y has a distribu-
tivn given by NN

S\
Pla=x+y=uw)= ‘\\\ e (8)
i ‘:t’{i+uf=ﬂk

Exercise 4. Show by means of (Glff,fgétt-, if x and ¥ are Linomially distributed
wilth the parameters »y, 8 and »o, g Tespectively (of. Example 2, §4.3), then 5 =
x + 3 iz uleo binomially distributed wilth the parameters » = v + vg, 8.

ixercizse 5. Show by mea.nxaf (6) that, if & and ¥ both have the Poisson dis-
tributions with parametersgdyfnd go, respectively, then x = x + » also has the
Poisson distribution with Th parameter p = u1 + g2,

§4.12, We say@hat the two-dimensional random variable z has a
conlinuous digt’{i»bution funetion if there cxists a plecewise continuous
function ¢ t;"’t@){’z 0 (i.e., ¢ cxdsls and is continuous apart from. possibly
certain pgimts on a {inite number of curves) so that the probability of
& assupiihg a value in the region  of the fu-plave is given by the plane
mte.grz},l )

W Painw) = [ [ olt, w) dtdu. (1)

e(¢, u) is called the probability density (or the correlation fune-
tion) of x and ¥. In analysis it is shown that

a*®(t, u)
oty u) = — =~ (2)

at the points at which (7, 1) exists and is continuous.
Thus the probability of # assuming a value in a certain region is
given by the volume lying between the surface, v = @(f, u), and the
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given area in the fu-plane (cf. the one-dimensional casc). We say
that o{f, #) di du gives the probability of z assuming a value in the
“infinitely small” interval t 2 x St 4-dl, v =y = n+ du. We
wish to slress that it s ¢, u) di dv and not ff, ) isell which gives
the probability. In analogy with (4.4.5) the distribution iy ofren
riven in the form

d® = ft, u} di du, {3)
which is also ealled the probability differential, s &N\
From (1), or (2), it follows that N\
ot u) = f_t - f_: elt, u) di du, i':; @
and from (4.9.2) N
E @ ‘1"\\ ’
[ 7 et wydrdu = 1. LE (5)

X 3
»

Example 1. Let us consider the firing of &' cannon, and let us
assume that the azimuthal deviation x andihe height devintion ¥
from a target having z, y coordinates }g};ﬁy are independent and nor-
mally distributed with parameters u, e, and fy 0, Tespeelively (of
Example 3, §4.4). Then from thesghltiplication law the distribution
of z = (x, y) is given by oY

X ¢

A\
N

d@';(p(t, u)dtdu: 1".$\(}Xp|: _ I(l__a ”I}d (u_P?iJz}jdzdu

" 2 2
3‘-‘{30—&' 29':5 2 ¥

\ (—w<5<w,*w<u<m)_ (6]

The generalyti¢y-dimensional normal distribution can be obtained
from (Ff) b?-':z‘\ﬂdmg & cross term in the exponential and changing the
normahzz{pr@& factor correspondingly

O
B '« 1
4% <Np(t, u) di du = .
\Ms: w 4 2‘11'(‘.!'._,:0‘LII ’\/1 . pﬁ
p 4 1 {{ — u )2 (3 B )( _ ,
=P [ 12 ‘——— R T ) (w —m) ]
1- ,02 20'3;2 Y a0y ‘+' 20—3;2 l df o

(—e <t < w, —w <u< w) ()

Here p is a new parametor for which —1 < p=1, Forp= +1,

x and y become proportional since then the total probability mass is
concentrated on the straj i = Ty :

ght line u = p, + . {t — ). (Later, in

Chapter 7, we shall discuss thig distribution in greater detail.)
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Example 2.  Another continuous distribution is given by

d® = o{t, u) dt du

1 1
= (—-—-u——l FRE R dt du, {8])

Check that (5) is fulfilled in this case.
§4.13. The probability of a assuming s value between — o gnd ¢

independently of which value ¥ assumes is given by ~\{\
3 0 PR ¢ N \
a0 = [ a7 e wa 2w

No

®.(1), or briefly &(#), i called the marginal dlSlrﬂ)u{lﬁn of x. In
anfmly sig it iz shown that, if we assume that the fun{’u\on

et = [ olt, 0 ofya,\', @

o/

or briefly (i), has at most a finite nu l:zer of discontinuities, then
®.(f} iz a continuous digtribution with \th‘e probability density, ¢:(f),
as given in (2), Analogously, the pl*obablhty of ¥ assuming a value
between — w and u mdependently»of Yhich value & assumes is given by

&, () -—¢3(u}\ f du [ ol dt (3)

®,(1t) is called the ma o‘}nal distribution of ¥, and under the same
conditions as above it 13°a continuous distribution with the probability
density e

,\:I.;‘“' o) = [ ot w) d, (4)

or briefly, Q(’u,) We wish to stress that although the marginal dis-
trlbutmns\are given uniquely by the two- dimensional distribution the
comerse is not true. For any given functions ¢ (f} =2 0 and ¢, {u)
&) Satﬂbf} ing only (4.4.3) we can always construct the two-dimensional
dlstrlbutlon given by elt, %) = ¢.()o,(u}). IHowever, as shown in
the following example, there may exisl infinitely many two-dimen-
sional distributions, all having the same marginal distributions,

Example, For the normal distribution (4.12.7) the marginal dis-
tributions are, independently of p, also normal with the paramecters
Mz, 0z, and gy, oy, respectively. To show this it is convenient to put

I — ug U Hy, (5)

Tx Ty
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From (2) we then have, introducing (5) into (4.12.7),
dd, = o () dt =

de ® 1 2 2y | g,
—— . exp | — — (w* — 200y + v )}dy =
2«\/1—92/—1. p[ 2(1 = p%

dx x? « 1 _2J
TT——=E8xXp | — — ¢ — px dy =
‘zm/l—p?ew{ 2}[«,@@[ 21 — o ¥ ~

dr . [ 3:?] [x 1 exp A {,Q} s
e | =& —— oxp | O i,
Vv 2r P 2 —aV 2 A~ 2

—-y—_p—i2 45 a new \-'ariable.x'\\'Fi:om the fact,
1l—0p <?

proved in Chapter 7, that this last integral ig equ:a,.]>so 1, and by wtro-

ducing ¢ instead of z (from (5)), we find

if we introduce » =

O

7, MR
db, = o (D) di = —1_ exp \—\“@{_ﬁ-ﬂ di, Q.E.Ib. (6)
'\,/ T Ty ¢ "\\' 20':52 ’

In the same way we find the coryﬁsé%nding resulf

LN

N ~ y)?
2%y, = o (u) du ;\_\*/‘-:— exp [—- L%f—”)~] du, 7
&\ 27 oy Ty

Incidentally, (6) or @({E}:{ows that the normalization factor in {4.12.7}
is correct, i.e., tha:‘r» (4112.5) i3 satisfied.

We define gﬂé}(ﬂu), or briefly o(t|u), by
:o\w’

{\{w}“ ﬁoxly(tiu) = %(%’ (8)

N b

agg\.@x(u]s), or briefly o(ult), by

O oustuly) = 241, ©
‘P:t(t)

Then we see from the identity
@(5, u) didu = @z(t) di ‘Pyl:c(ulz) du = ‘Py(u) duﬁczl-y(du) dt (10)

and the multi}:tl:'fcation law, V, that do,,, = er1y(tu) dt gives the condi-
tioned probajblllt-y of x assuming a value between ¢ and ¢ + d¢ under
2l y has assumed a yalye between % and % -+ duw.

sponding inlerpretation. These two
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Excrcise 1. Show that
[_: apy () dt = f_: ey (uft) du = 1. (11}

If (,,t|?,,(r|u; = ¢.(t} for all values of { and u, which from (10) implies
that ¢, (u|f) = ¢,(x), we say that x and ¥ are stochastically inde-
pendent, or simply independent, and we then have

ell, u} = eu()ey(u). (12)

Exercise 2. Conversely, show that, if (12) holds true, x and # arc indepen ’\

Exercise 3. By means of the results of the example show that for theaorial

distribution the two conditional distributions are also normal with the E&i‘}a’mters
U

= pr +P_W‘“'.I-¢y), ¢ =1 —ste, and #—Juy-l-p f.m), g =
_ iy i\
V1 — pey Tospeetively.  That is,

d‘Pz]y = ¢a:|r;(tlu) di =

N ! (s O ))2] A (13)
=X | — o [ ol Y e (u ey
\/2?r ‘\/i_ — p2 T 201 — Pze'a'xz :\.\\(\\: Ty
and W\
Dy, = ﬂﬁ’ylx.'(@”’) du =

1 1 oY Ty 2
_\/?\/—1.:__‘0_); exp [ - w 2(% — py - p—z ff — ,w)) ]d’u‘ (14}
*§4.14. By a function w¥ f(5) = f(x, y) we understand = new one-
dimensional random V.i,fl{l.\bl(‘ w which assumes the value f(¢, u), when
% assumes the valueand ¥ the value . The distribution funefion
®.(s) of w, which {¥equal to the probability, P(w = s), of ¢ assuming
& value stallepyb thin or equal to s, is then from (4.12.1) given by the

plane inte gft ‘of o(t, #) over that region in the #u-plane in which
W= s g\

j~\ B,(s) = P(w = 5) = /fmgs oft, u) di du. (1)

AN
‘(if,ﬁéﬁ it is convenicnt, e.g., in evaluating (1), to express the dif“’—
tribution d® = @(t, u) d¢ du in new variables ¢/, w given by t = (¢, %),
= u{{’, w'). It may beshown! that, if the so-called Jacobian fune-
tional determinant

o ot
o ou'

AW == () @)
o, w') |au ou
o v’

!Bee any texthook in analysis, e.g., that of R. Courant, Differential and Integral
Caleulus, Now York, 1947,
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i the whole fu-plane, we have

‘ A, u)
0, u')
(U, W) dt dw = do’,  (3)

@@ = olf, u) didu = o(i(t', w), u(t', w))- e’ du’ =

which is a direct gencralization of (4.8.1). /

Introducing into (1) the new variables s = Ft, w) and T :’({Q\Lu)
(the r being an arbitrary variable, e.g., 7 = ¢, for which (2} iy sivkishied)
we find o D)

: e, uy)
&,.(s) = f_mds f dre(t(r, 8), ufr, s)) l‘a—( _s:)T {4
i -

Differentiating (4) with respect to s we havg Ph};ﬁthe probability
density of w is given by v

\/
qu(S) = [@(t(?‘: S), uft;\;’i)é PX, u; dr. (5)

J NCALIO

Example. Let x and ¥ be indepéndent and have the probability
densities () and oy 18) respoetively, For w = +y we then
obtain from (5), putiing s = thuand eg, r = ¢,

. p” .\\a({,} 2% I L
euw(s) = ‘Lu:a ﬁozft)’\gig,f?‘\) fg(?‘_,s—;i dr = /‘ _e=(Noyls — ) dr (6)

. PN a(t, u)
since — .

We leave 8)the reader to generalize the formulae of §4.9 to§4.14 to
random)\(éni’ables of more than two dimensiong,

"‘Mdﬁ\ Stochastic processes. (One offen finds problems in which the dis-
tribnﬁion of a randem varighle depe

b nds on a non-randon variable which is a con-
tihnesly VAIYINg parameter such gag time,

In these cases we then speak of &
chastic or randem process.t

Ple 4, §4.3, we have mentioned an
rocess, l.e., a process in which the
In the theory of Brownian

i i an particle is the three-dimen-
stonal random variabls we have an exarple of a continuous stochastic process,

ie, onein which the random varisble ig continuously distributod. Here the total
“probability mass,” P(V, ) = f f
7

ume ¥ i3 a function of time,

motions in which the position (z, ¥ 2) of a Browni

el ¥, 25 1) dae dy dz, inside a given vol-
(In this end the two following topies we use the same

€ ¢.g., Khintchine, Asymptotische Gesetze der Wahr-
» Math, dnn., 113, 113, 1937

! For the general theory se
seheinlz‘chkeitsrechnung; Felter



§4.15 49

letter for the random variable and the corresponding variable in the distribution
function.)  Sinee probability is conserved, i.e., canneither dissppear nor be created,
any change in £ must correspond to & flow of “probability mass” through the
boundary surface F of V, a “probability current” in the mechanicyl pieture of

.
§46. Tj the veetor s denotes the probability eurrent densily,i.c,, the probability

o
mass crossing o unib ares perpendicular to the direetion of s per unit time, this
eonservation law becomes

qr d p
i ] ] foew [ [ B

. . - R - :: N 3
in which dp is a volume element, df a surface element with normal 7, pusitive out-

— — . W
wards, and s, the component of s along #. By moans of Gausa’s ‘theorem we

obtain frora (1) the so-called continuity equation O ?
&
L= Be 85, dmy . 85, fuaNS
d73 A _Hl_+"_=03 2)
Mty T Ty e 90y ¢
IAY
.’{

which is analogous to that found in e!ectrici%"h}at conduetion, and quantum
theory, O N

Often it may be a good approxima.tion:t:i Assume that s is proportional to the
gradient of , as is the case, for exampléy¥n heat conduction, Then

- A, do d¢ de
= — D& = —D\—=y—1— | 3
¢ ,{\{Iﬁh i (c?x’ ay az) @)
¢ '\,::
in which Di>0)iza cml,stt’h} called the diffusion eogflicient. Now (2) reducos Lo
‘:\./’ . de
LY Ddivegrad ¢ = D g = —» (4)
x:\"' ) at
i"\\.z. 62 62 62
\\ e e Sl o
W\ i oy az

E‘Q{e‘i;ﬁ- Show that the normal distribution given by

3
qu{rp(:v, Y, 2; 1) dv

P 2 — 2 i — ‘,]2'
{2 )"+l ~ s)” "‘J dzdyds, (5)

1
=—" _axp| —
2 /2Dt [ 4Dt
}Vhich is the three-dimensional generalization of (4.12.6)fore, =a, = 5, = ’\/QDf,
& a solution of (1), For £ — 0, it is seen that @ — e(z — pg)el(y — uylelz — pe)
{¢f. Example 1, §4.3), i.e.,, that (5) correcsponds to the initial condition that the

Brownian particle is at the point {(ps, py, sz) With certainty for i = 0. TUsing the
Dirae 3-funetion {cf. the ond of §4.4) we may also express this by writing

elz, gy 2t =0 de = 8z — pe)8y — wmy)blz — we) do.

‘
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If, besides the “diffusion current” in (3), we alzo have a “vonvection eurrent”

-
with the veloeity :’), we have to add in (3) 2 term ¢ v,  Furthermore, if we ullow
D {o be & funetion of {z, y, ), (2) instead of (4) then assumes thie general form

. — e

A{Dy} = div (ev) = el {6)
This so-called Planck-Fokker equation is the goneral equotion of & three
dimensional continuous stoehastic process; it deterntines vngnedy Tor all titmes
if ¢ is known for one time, ¢t = &. (It may be generabized 4o auy ni.mlher of

dimensiens. } AN
Stochastic processes, both diseontinuons and continuous, play wn ey
role in many practical applications suech as pluvsies, enginecringe {
lephony ), biclogy, and ingurance.! 5':.
*§$4.16. Siatistical mechanics. Speein] cases of continmly storhinstic proe-
csses and many-dimensional distributions are found in stxmlmtit‘al mechanics,
that branch of mechanies which studics the motion of Gidies when the initial
conditions are noi, sufficiently well known to permit ghd\eausal deseription that i
in principle always possible in elassical mechanies, ANhe exart charnelerization
of the state of a mechanical gystem with f dogz;eéts}:f freedom vonsists of stating

N &

!.-he “point” r o= (gq, - - - 205 PL - - ABENE the Af-limensional phase spuce,
i.c., the numeries]l values of the f genemli{ed\ eoordinates, ¢y, - - -, g7 and the
corresponding f generalized momenta, By .- - . Pr (which are generalizations of
cartesian coordinates and cartesian wementa, respectively). Since in more com-
p.lmat-ed cases, such as in describingfl gram of hydrogen ( {J-}. §1.2), it iz either prac-
tically impUS_Sible or inconvenientyth measure, and stafe, all these 2f quantilies,
Weuse a St.atlstica.l descripti% ie., we treat our vector as o 2f-dimecnsional random
variable with a contimmps\x&istribution function which depends on time. Thus

-3 ¢. & \v/

de = ?(f,t}riv=¢(?1;\- A PL c c pEdg - - deredpy - - dps (1)
where do iz the eloment of volume jn phase space.

ipbredsing
ageially te-

It may be shown that ¢ satislies

\¢
4 Epecial f(inn\ﬁ‘.dl' the Planck-Fokler equation {4.15.6) with Y - da

, “\a
B \,/ . -
p7 )}{Q\g the velocity ' of the phase point, + -

TAmong the numerg

~Pre !
Processes ang e - ; k Rk
\ N 1 Cosmic Radintion (theory of discontinuous procesacs and application

and Astronomy; Lundb;ars:dgtﬁ;l); Chandvasckhar, Stodastic Problems i ‘Ph%"": o
(theory of di;cont.inu &, tvandom Processes and Sickness and Accident Statistivs
Stachastic Processes ( E‘OU.S PI'OCOSE(‘_S- a.1‘1d application to insurance); Bartlett,
*CE, e, Gibb gencral theory “:lth‘ Ulustrative examples from various fields).

| i ObS, Elementary P rinciples in Statistical Mechanics, Yale, 1903

(general theory): T o
{general theogi; Li(;lézan’ The Principles of Statistical M echanics, Oxford, 1938

S Ay, Introduction o Phaese an _— n
spplicat . X ysical Stalistics, W oy, 1941 (many
uprTl&m:;J:i) ME}S Sllh].ect 18 trealed from the point of view (;f 111ode;n probabilily
tions, 1949 ,and it 9";;& fieal Fﬂunda,zg‘?ns of Statistical Mechanics, Dover Publica-
Stat. Soo. ]j), ol 111 loyal, Stochastia TProcesses and Btatistical Physics, J. Koy

> 7 VO AL 1948, See also Born, Cames and Chance, Oxford, 1949.
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I

B ot i i it a Ak dy .
liviev: |- - = — e — — - =
div {ovs | I E (e’iqk (ﬁa (ﬂ) + IpE ((o dt )) T 4 o @)

which delermines ¢ uniquely for all times if ¢ is known for ene time, § = {5

We note that the dificrenon hetween the general stochastie process described in
{£.15.6) aud The specinl ane deseribed in (2) is that the randomness enters in two
different wav=, [ the former ease it is the transition from the initial state,

— —
P =(xy, y1, &), of the system at a time £ to the final state, 2 = (T, ¥, 22}

at a time f» (> 110, which is random, whereas in the latter ease it is the initial Egt»ate

itself which is raudom, the trunsition to the final state being causally (uniqué@\)

determined from Newton's mechanical laws if the initial state is known tg be
& W3

exactly ' = (', - - -, py), Le., if the initial distribution is causal dis{fyibu"ﬁion:

b =elgy - gy - - elpy — prih AN

If the temperature of our svslem is kept constant, experience sﬁawsth&t o will
approach for { — = a certain stalionary distribution which is\“\nﬂepcndent of the
initial state; we say that our systern has eome into thermal ol giatistical equilibrinm.
Bueh equilibria are the main subject studied in the Applications of statistical
mechanics. However, recently the problem of hoy 0¥ equilibria are reachec.l,
the so-callerd transport phenomens, has also bch‘ atudied. Mathematically this
means that our aystem iz considered as a small p:}rf of a very large gystem (heat
bath). Ti can then be shown that the statigndry distribution, B, 15 given by
Gibby' cunouival distribution, £ = E{u; 3% -, py) being the total energy,

- ) ’;f.’;s_‘

dBgiay = (’pﬂat(f Jde = eexp [ — f‘(ib_.:};?_ﬁ»ﬂ] N dql PRI dq)g .dpl - dpf_

’..’\\ @)
¢\

Here ¢ i5 a normalizotic ponsta,nt often written ¢ = CXP

v 1 T is the sheolute
T

tempersture, and Ec.is.'z; physical constant called Boltzmann's econstant. 'Thus
g =kT(> M is gmarbitrary parameter callod the modulus of the distribution.

{In particular, siwe consider only such variations of g1, - -+, Brin phase space
for which Exr‘aﬁnstant, we call the distribution obtained from (3) the miecro-
Cannni(:ql:'?ﬁs‘tl'ihlltion.)

'"\. ; . * Lo -
EX‘iTgrse. Let the system congist of N particles and be eonservative; Le., M

N/ N
cartesian conrdinates K =T + V = 2 51_ (pa? + ol o) + Vizy, -+ -
) & 9
fﬁ;}’ T heing the kinetie, ¥ the potential energy,
o th‘r']’t_' the componentzs of the velocitics are ind
m}ltu‘““}" independent, and that each has a mAarging
\«-"1th parameters = 0, o = /KT /i Maxwell-Boltzmann’s law.
disteibution of u; = 4/nn? T 25° + 02 cf. Bxcercise 3, §74)
Example 1. we ws,n;; to rcrloind the reader how (3) should be compared with
“xperience (uf, Chapter 1). To that purpose we had to consider a large namher,
™ of identieal copies of the mechanical system considered, all being in thermal

and pg; = Witz and #o forth,
ependent of the soordinates, are
1 distribution which is normal
{For the
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equilibrium at the same absolute temporature 7. Let us assitoe that, at one and
the same time, we had meesured the state of sach of these n svstems, ie., their

- —
phase points, and found the results ry = qu, - -, pad, - o, o= (gin, - - -,
Pre). Let ¥ be an arbitrary region in phase spaee, and let we bothe nuwher among
our % messurcd phase points which lie inside ¥. Then the relativee frequeney

ay/n would be the experimentsl value of the theoretical probability /2 = f . Ce

¢ dvof ﬁnding_;insidc V.r This empirieal population of 7 measured p]:usr;\pnints

is obviously of the type (3) in the classification of § 1.1; we shall call it; LPN\empir—
ieal space population. Now we could also consiruct another empiricad Dgpulation
of n phase points by considering only one copy of our mechanjeal sy‘si.cnr, assimid
to be in thermal cquilibrivm at the ahsolyte temperature 7, l{u{; then mensuring

its state, i.c., the phase point _;, at a large number of consegtﬂ}ve times i << fp <

* < i throughout & long time interval, "I'his secoml.fmipirim.] pupulation of
# measured phase points is obviously of the type (2°ah$1.1; we shall call it the
empirical #me population, If, now, we ealeulate the Telative frequeney #,/n in
this second etnpirieal population, experionce showsriodirectly, that ny' /n may also

W
be regarded as an experimental value of the Sﬁ,}né*pmbab ity P = f S [ o db.
{ v

This remarkable experimantal fmdinth,h‘zi.t' both a space and a time popu-
lation lead to the same results is o charaeferistic fe

ature of systems in equilibrium.
. .. Nl .
However, on reflection, this is not SURpIIsIng ;

if the system is in equilibrinm it 15 &
natural conjecture that, during a sefficiently long time its phase point # = 7 (£)
will move in phase space in Such o way that it passcs arhitrarily close to cach
phase point and wil} Spen'd\'a}bime in any region of phase space, ¥, approvimately
proportional to the ‘pl"(%ability P = edr. In fact, in advanced
$ v

brobahility, thig s,g'éa:]led crgodic theorem may be proved under very goneral

conditions,2 N

Example 2 Trom the eanonical distribution (3) of {he phase point of our
Eystem tlggfg'fﬁbution of any other physical quantity in the system can be deduced.
Thus, ifedy system congists of ¥ identies] particles, sueh as 2 gas containing ¥

iden‘t-ic;' moleculos, ic., f = 3N, we may for instance ask for the following.
N —

TE g - o, ) as one 9f( =6N)-dimen-
> 1.8, considering one phase point in a BN-dimensional

N\ oy .
.h}ﬁgead of considering
\sioual Tandom variable

phasc space, called the v-space, we may also consider 7 as being A, in general
dependfant, rando‘m variables, cach of 6 dimensions; ie., we consider N phase
boints in one B-dimensional phase =pace, called p=space. Now if we divide 1his

' It should be mentioned that In reafity ny/n eannot, of course, be mensuied
directly, since not eVen a single phage point can actually be measured, beenuse of
the enormous valys of F 1078, However, other properties of the system cun
be meastred, and this {3} can be tested iudi.mctly.

1923?%’ &8 B Hopf, Brgodentheorie, Zrgep, . Math., vol. 5, Heft 2, Berlii,
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g-space into a finfte number, &, of regions, w1, - - -, wy, called ecells, we may ask for
the probability of & certain eell disiribution, ie., that among the N phase points
there arc just Npin wi, N2 in ws, - -, Npin g Since Ny, - - -, N mey
assume¢ different values in different measurements {performed either in a space or
a time population), Ny, - - -, Ng will form a k-dimensional random variable.
‘This cell distribution may itself be deseribed by a distribution function Fip),
equal to the relative number of phase points lying In cells with a number smaller
thanorequaltop = 1,2, - - - | b Formally, the funection F{p) is a step function
having exactly the same properties as a discontinuous distribution function (§4.3).
Thuz we zee that in certain cases a whole distribution function may itself be trefited
a3 a random variable {(with a number of dimensions equal to the number of. dis-
continuities, viz., & in our case}. If we clioose k very large, F(p) may bd approxi-
mated Ly a continuous distribution funetion. Thus we are led to coqs’r@er d'whole
rontinuous distribution funetion F'(f), i.e., each value of F(£), as a randdm variable
and thus generally to speak of the distribution of 2 dist-ributioﬁ('"Howcver, the
dimensions of this randomn varighle, being an clement in .“{%ction space,” is
obviously highly infinite. Henece we are outside the realmy of\ﬁla.ssical probability,
but in the medern, very general, theory of Kolmogorofigueh infirite-dimensional
probabilitics may also be treated. \/

The cell distribution in p-space must not be confus'é&wit-h the canonieal distribu-
tion in v-spacc: the former can always, both m\Bsdical and in quantum statistics,
be deduced from the latter, but for the fur‘t-htér diseussion of these questions and
of the further application of probability .cmt.liﬁcd in this topie we must, however,
refer to texthooks in statistical mechanice.™

*$4,17. Quantum theory. In giithtam theory, which may be said to be one
large theory of a speeial type of stothastic processes, these stochastic processes are
described differently from those:Qlentioned in §4.15 and §4.16. Whereas in dif-
fusion phenomena the randﬂmﬁess enters only in the transition from one state of
the system to another a'm’f\}_ﬁ gltatistical mechanics it enters only in the initial
state, Lhe transition itshlf being sausal, in quantum theory the randomness enters
both in the initisl state afid in the transition from this state to another. A further
difference is thatn statistical mechanies the initial statc is considered randora
only for practicAPstasons, an exact measurement being in principle possible, while
in quantum_ 580ty it is random by principle since the interaction between the
measured &t}m and the mecasuring apparatus cannot be negleeted for atomie
PhCﬂOrneiIl,& {cf. §1.2). Thus the initial state cannot be messured accurately
cnougho permit a causal deseription.  Any state of a system can, therciore, be
déstiited only by a certain distribution function, which in general is diffcrent from
theuusal one, e(f — ). The transition from clagsieal to quantum theory, both
in mechanies and in clectrodynamics, tekes place by replacing, in a certaln way
called guantization, the causal distributions of the cxactly meassurable physical
Juantities of classical theory by more general distributions. These general dis-
iributions contain the elassieal, causal ones as special limiting cases when A — 0,
h being a new fundamentsal constant, called Planck’s constant, Instead of giving
these distributions directly by their distribution funetions, the quantum theory
first pives certain complex functions called probability amplitudes, the squares
of the numerical values of which are equal to the differential distribution functions,

L For a discussion of fundamental experiments and principles‘, ag well as mathe-
matical formalism, see, e.g., W. Heisenberg, The Physical Principles of the Quantum

Theory, Chicago, 1930,
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Thus, for a single particle of mass m moving in a conservative liell of forve with

potential energy Viz, v, 2], any state is characterized by 2 so-ealled Schroedinger

wave function, or probabilily amplitude for pasition, ¥, y, 2 0, Audisfving

Behroedinger’s wave equation which iy enalogous to the diffusion equation (1.15.4)
Brlm Cdrm iy

= —f— 1
B2 v ‘ hooat ()

in which A is defined as in {(4.15.4), & iz Planck’s constant, and ; - 'v/— L. Tere
[¢(? is the probability density at the time { of the dhistrihution of the #0sition
{#, ¥, 2) of the particle; i.e., the probability of finding it insice any I;c;g}m ¥ of
ordinary space at the time ¢ is WV

N\
o
g )
.
=1

P30 = [ [ [ 1o v, 202 an; /1 '¢-|‘\~’.\ms; E

(2)

Exercise. Deduce from (1) the continuity eguation (:Oi{érﬁpnmiirtf_{ to {4.15.2)
I }

- 3 . A N
div SHP=0 4 = * B wrad o*) 3
5 4+ Py “f/| , & oo (¥ gfii\tkg ¢ grad ¢ *, {

in which * means complex conjugate and grari\gc:i}a\deﬁned asin (4.15.3).  (Multi-
Ply {1) by ¢* the corresponding equation fov* by ¢, subtract, and use partial
integration.) \ ¢

TR Y
N

The fact that it is the brobability a‘n}p}itudcs and not the distribution functions
themselves which enter Primarily, jodthe mathematical descriplion givey rise to
interference effectsy wherchy the\usﬁa] probability laws
(see, a.g., Teisenberg The P, 100l Principles of the Quant
§2).  From the Y-funetion i{h;;z
constdered the distribuﬁq}; !
further discussion of Ahis ap
in gquantym theorysy W

\¥;

L
x:\s.'

N
L 3

are somewhut modified
um fheory, Chapter IV,
racterizing 4 certain state of the mechanical system
of any physical quantity can he dedyced. For a
Plieation of probability we must refer to texibooks
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MEAN VALUE AND DISPERSION

§5.1. For an accurate characterization of a distribution it is,ref
course, necessary to know the whole distribution function &(¢) or,\for
a continuouz distribution, the whole probability density :,o(fcﬁﬁpf X
Now, in most practical applications the probability mass of_& ‘will be
concentrated mainly within a relatively narrow intervaland therefore
te get a rough ides of the whele distribution it is ofﬁé} appropriate
to indicate the position of this interval by some megsure of location,
giving » tvpical value of x. Although any suchJeasure is, as a rule,
uniquely determined by ®(t), the converse iss Gb\nou.s]y not true.

There may be constructed infinitely mag}yssuch measures of location,
but in practice the following three are those mostly used: the mode
is defined as the most probable value.of ¥, i.e., for discontinuous and
continuous distributions that Value of ¢ for Whl(,h o; and ft) respec-
tively are maxima; the mediants defined as that value of ¢ for which
®(t) = 14, i.e., for which thesprobability of » assuming a value smaller
than i is equal to the probability of x assuming a value larger than i;
the mean value, or b#b{lY the mean, is in the mechanical picture of
¥4.6 defined as theenter of gravity of the whole probability mass.
Which of these, ©f6f other, measures of location fo use is quite arbi-
trary, it being b&h..ly a question of convenience, However, since most
rules of ¢ 1cu‘1f;ttmn are simpler for means, this measure of loeation is
that most mmunly used, but in special problems other measures

may be more convenient.

mel’ﬂsse Discuss whether or not the mode, the median, and the mean always
PN nnrd wre umquolv determined by ${t) (treal the dlseontlmwus and the con-
tinnous cases soparately). Next show that, if ¢(f) exists and is sy mmetric aboub
t =g, {hon the medivn and the mean are equal to o; and thet, furthermore, if
#(f) has only one maximum, the mode is also equal to &.

From the mechanical picture of §4.6 and the definition of the center
of gravity of a body it follows that the mean of x, which we shall
denote by either 9 {xl or g, or briefly u,! is, if it exists, defined by

t Other symbols and names used are <x3>, o <x >4y O av # from “average
of 55 E{x}, from “expectation value of #,”* a term originating from the appliea-

55
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o

L b _ f_m Lol dt

5: p_’ f_x o(l) dt

«
im—

(1)

for discontinuous and continuous distributions, respeetively (f; and g
are defined in §4.3, () in §4.4). Thus for caleulnting the megn we
need not normalize to one. However, since we Lave ussimed thitt this
is always the case, Le., (4.3.2) or (4£.4.3) to he salistiod, we ?:L}-’{;

.
U
w

E tip; for discontinunoys gli’@fi‘i}mtinns
= { - (4 2)
Be=da) = (T (v

fﬁ Loty dt for cont-inluﬁﬂq’flin'lx'ilmt.i:ms_
o AN\
(In general, it is, furthermore, assumed \ﬁﬁ&t the sum or infegral is
absolutely convergent if u exists at allj\\\ /

N/

Example 1. Tf x is bounded, i,e’,;}z:é can

assume only values lying
In & finite interval g < ¢ < G welbave in th

e discontinuonus case

~ {
N

; . ¢ L\
and in the continuou# gage

6,8 6 e
I=0 @@ a< [*ioma -, <G [“ewa=6
In both cageéalies between the smal

: st and largest values that x can
assume, wiiich faet justifies

the name meun.

Exataple 2. If yoqp assume only the values 1 and ¢ with the proba-
bilij:)g’& and 1 — ¢ respectively, we have
V EEREL=1040-0—gy oy, (g

ie., the mean is equal to the probability of assuming the value 1.

-
tions of probability to Famos o

f¥mbol and is myuch used, eg,
thing different {ef. p. 76), an

T chance; % which

Is perhaps the most convenient
In physics,

However, in stalistics & denotes some-
we shall not use it to denote means.
ix} is not o function of & but a2 “fune-
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Example 3. If x assumes with equal probability the values 1, 2,
-, 7, we have

1 1 1 ni1 1
p=Mx} =1 =42 =4 - _,_V._:M_:Ei:__ (4)
2 ] by 2 ¥ 2
Thus, if » is the result of throwing a die, we have » = 6, i.e, 4 = 3.5,
Example 4. For the binomial distribution (Example 2, §4.3) we
have by means of the binomial theorem

v

N | .\\\
g = IM{x} = 21(1) g (l— gy = Oy
"‘\ o

i= ) £

» b1 \.;‘
8 ga—l 1—6 O—D=li—1 _J, A
0y (37— e M

X

p=1
¥ E (V 1,_ 12 (1\ D= . g, (5)
o & \/

i'= £ '\
‘ e shall later give a much simpler mef of this formula (cf. Example
§6.4).
hxamplc 5. Tor Poisson’s qulbutlon (Example 3, §4.3} wehave

- N = i—1
Mix} = E{ﬁ‘bi—, = ¢ *y E (f_ o= (8)
1 =11

which shows the reiso"ﬁ for using the letter u for the pammcter of this
distribution, :[\hus in Example 4, §4.3, we have » = M; Le¢, M is the
mean num er"b’f calls per unit of time.

*“Exam gle The result of the preceding example has an important
&DDhca’Li’Oia to the theory of Geiger-Miuller counters (cf. Example 5,
§4, 3JA. JLet Geiger-Miiller counters all have the same resolving time
E N}f{ ‘h is the minimum time interval between two consecutive pas-
sages which the counter can distinguish as two separate cvents. Next
let the mean number of counts per unit time for the » counters be
Ny, -+ - N, respoctively. We ask for the mean number of spurious,
or accidental, coincidences per unit time between the n counters,
First, the conditioned probability of each of the other » — 1 counters
being struck at least once within the time interval r after one of them,
#ay number 1, has been struck is

(-[ _ e-—}\«'gr) PR (] —_ 3‘”»")
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(why?). Therefore the mean number of accidental conteidences in
which counter 1 35 struck first, s N times this probuability. Finally,

the counter struck first may either be number [ o namber 20 ..
ornumber n.  Thus the total meun numbor of necidentyl voineidences
per unit time is, assuming Nyr & 1, - - - s Vom0 1,
aNy - - N L {(7)
Example 7. Also for Paseal’s distribution (Example 6, §4.3) the
barameter u is 50 chosen that it is equal to the mean valie: ~\\\
m{x} — E?: 1 _lu__)a' - i"‘; i (8)
ot T+ u\l + A\
- N
This may be shown by the following device, wHich is ofien uscful.
If we put — % . _ £(<1), we have O
L+ K7
zzx‘ xi’i =1 . i\\\\ d 1 z
- Z =&— LN _— - = — —
~ ~ dx xd:rl — (1 — )"

L\
N\
Exercise 2. For the caugn,l}ﬁst-ribution
tion (Example 7, §4.3), a\nifh
the parameter ki3 alse, eqiial

(Example 1, §4.3), for Pélya's distribu-
f Laplace’s distribution (Exarple 2, §4.4), show that
to the menn value,

. Example 8, ﬁ;ﬁ’shaﬂ see later {§7.3) that for the normal distribu-

meter ¢ is again just, the mean value,
which fact:fxlée follows from the factg mentioned in Fxereise 1.

Exam. \R g, For Cauchy’s distribution (Example 4, §4.4) we have
o xi:':" L f- dt -
mi l"m/_m‘““@‘:;; = /ﬂ (= u) + wolt) dt =
\/ 14228

o

mean value is undetermined. From

= pit s, however, natural to definc the
Tgent integral 5o that

the symmetry of e(i} about, ¢
conditionally conve

Mix} = p 9
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{which iz called the Canechy principal value), It will be scen that both
ihe mode and the median exist for this distribution and are equal to
the parameter u (cf. Exercize 1.

Exercisc 3. Show that [rom ihe distribution of Example 2, §4.4, the mean
iife time of a rudioactive atom is (cf. Appendix 1}

Mz} = j Ty = 1‘(: T_) (10)
0 A In 2

where 7 iz the half lifetime (ef. the example, §3.7). Tn cxaroplo 4, §4.3, ‘I'ﬂ{\t ua
gives the mesn time between two consecutive oalls (o, Example 2, § 44, which
i, therefore, the reciprocal of the mean number of calls per unit timg\ﬁs‘f‘oimd in
Example 5. WV

§3.2. Quite generally we define 9 {y}, where y =x'ﬁx1;); cf. §4.8, by
3 QS

Z fltDe; forky discontinuous
My} = M) = {2 oA W

f_m f(i)fp(t)’\d\ki\;\ for & continuous

(if these expressions exist and are ahép?ﬁtely convergent). For it can
be proved that (1) always gives\the sume number that would be
obtained from (5.1.2) if we had¥itst worked out the distribution of y
frona that of x.! o

Exercise 1. Prove this ,ui:[c}\er the special conditions of §4.8, using (4.8.1).
Exercice 2. Teta be‘t{ﬁ result of throwing a dic, and let

’:’\’;”"y — f(x) = ] for x even
O 1 for x odd.
7,
¥Find the dwﬁ}ﬁ’tion of ¥ and show that both (1) and (5.1.2) give the mean value,
5. N
Exergi's,e 3. Show that for ¥ = a, o being a constant, we have
A
a\"

4

miel = a. @
"4

Next show that for y = ax we have

miax} = adix]. (3)

If we put y = y1 + y3, where 1 and y. are two arbitrary functions
of the same random variable x, (1) gives

Miyy + 2} = My} + Miyal. {4)
In §6.1 we shall prove that this holds true generally.

1 Bee, e.g., Cramér, Bandom Variables, p. 19.
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From (4) and (2) we get as a special result
Mix + a} = Mix} + q (5)

We stress that unless f(x) is a linear function the mean is nof invari-
ant by the transformation from x to y given by y = fla)sie,

Mif(x)} = f(om]x}). (6)

For example, we see that, in Exercise 2, Jm{x!) is not (2V€11~{{ﬁ*ned.
(Ct. §6.5.) A

*Example 1. In the Maxwell-Boltzmann veloeityC distribution
{Example, §4.8) we find by means of Appendix 1 N\

L at® exp [— @Y di g Lw 2% exp [v—}sh] de 2

Miv} = =8 TR T =
o _ 1% - . . )
j;; at® exp [—-p"1at 8 A z° %1) [—x™] de \/?T_ﬁ
¢
NS prr
O\ 24— (7

« \J i
and for the corresponding energy ﬁi’%’fribution

~

j; o' exp [“@’u}'&fi& 5% fﬂx 2T gy

_[3 o'u exp ,E‘%@u] i B fT?ejicgt
¢ o\\’; 0
\ 3 3
O — = =1 (8

) 2 = DKL )

M{E} =

</
T}EEHSIL;W{EE F0%T I8 not equal to Ym(m{v))? = (4/mkT. We
note § anl};s example shows that it is not always necessary to caleulate

the no izati . . ;
rfialization factor % nameely, if we are interested only in mean
valugga
rND

at 1t is not invariant for non-
The median 18, therefore, sometimos preferred

I the conditions of $4.8 the median of & func-
he median,

linear transformations.
for the mean, sinee ynde
tion is that funetion of .

Exercise 4., Verify this,

*Example 2. A humber of

speciy] sions tion in
(1) are often used in the literagy Peclal expressions for the funetion i

re (for simplicity we consider here only
'€ Use % as the letter for the integration
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variable). Tory = x*, k a real number = 0, (1) gives
suixt} = [ o) do = m, ()

which, if it exists, is ealled x’s moment of order & (with respeet to the
point & = 0). Analogously, 9i{|%|*} is called &'s absolute moment
of order &, and 9{(x — p)*} is ealled #’s central moment of order
k. It is scen that gy it a generalization of g, = p; furthermore, that,

i It exists, it Is uniquely determined by ¢(z). Conversely, T
certain special conditions, oz} is uniquely determined by its‘iuteger
moments gy, ge, - v 00 {‘: K4

Por y =4 =x(x— 1+ (a—k+1), k=123 -,
(1) mives ,'\\'“

_ - K
oe(=®) = [7 2 —1) 0 @k Q@ o = pw,  (10)
~
which, if it exists, is called x’s factorial niotent of order k.
For y = %, t a real number = 0, (1):@3{‘35
sn(e] = [ ° E9lE) do = va(0), (1)
which, if it exists, iz a funcj;iﬁzi:%f { called x's generating function.
For y = ¢!%, ¢ 4 real ngrghér, (1) gives

o (88 = [ 7 eplw) dv = wald), (12)

which, if it exigedids a function of ¢ called x’s moment generating
function, Sin;bé’;' if p,(f) may be expanded in a power series in {, the
Eth cocffieiént 1s obviously wx/kl

For g‘.’k«'—\ ¢i*% ¢ a rcal number, 1 = +/—1, (1) gives

"~ < v
V
which function of ¢ is seen to exist for all values of ¢ and for all distribu-
tions. Tt is called a's characteristic function, and it is a very
useful tool in modern probability.? It is seen that, if it may be
expanded in a powcr series of i, the kth coefficient is pp/kl Not
ouly i x,(¢) obviously uniquely determined by ®(¢}, but, conversely,
it determines ®(f) uniquely: for a continueus distribution we have

mie} = f—: e p(z) dr = X=(1), (13)

! 8ee, o.g., Cramér, Mathematical 3 cthods of Smt-a'stit‘:s, p- 176.
*For proofs of the following statements and apphcatlons,‘ Bed, e.8., Craméz;,
Mathematical Methods of Statistics, or Cramér, Random Variables, Chapter TV.
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from the theory of Fourier integrals

elx) = % fj e x(t) d, {14)

and for a discontinuous distribution {ef. Exereise 5) we hive, [rom
the theory of so-called almost periodic funetions,

.1 T O
@ = iJllm o7 | s e X () dt, . \M(15)

231
€ W3

in which &; is the jth step-point, ¢; the jth step of D(¢) §(§fl,3§=l,3; if x4
is not one of the step-points, (15) gives directly 0)&"1?1.:1‘1}101'm0re,
we have the important theorem that, if ®,(1), $.(1) FO s o series of
distribution functions and xu), xa(t), - - - t-l'xef{:@rrespomliug ROTIOS
of characteristic functions, then the necessary and sufficient condition
for the convorgence of {8 towards g djs%}ﬂﬁution function ®{t) is
that, for every ¢, x,(¢) eonverges to a limiy x(6), which i continuous
at = 0. x(t) is then the characteristiij}functiun of ®(i).

*EExercise 5. Write down the exp{eésigﬁs corresponding o (9)-(13) for dis-
continuous distributions, &N

*Exercise 6. Show that,
% + b, where g (> 0)and &
xy{t) = exp [biﬂXx(ai)-

*Exercise 7. Show t@a{’thb characteristic function is

if » hag'the characteristic funetion x,ff}, then ¥ =
TQQI‘bitl‘al'y constants, has the charscteristie funstion

x(f) = e"‘f' O for the causal distribution (18)
\’2
x(i)x=\:(:{~ + oet — 13y for the binomial distribution (17)
@\ﬁ exp [ufef — 1y] for Poisson’s distribution (18)
‘”;.;\}(f) ={1+p1 - giy)—1 for Paseal’s diztribution (18)
o N = iEy ) —
~O X = (1 + gu(t — “NTVE for Pélya's distribution {20)
/ 2
—_ h il
x() = exp [wi Y 32] for the normal distribution (21)
X&) = oxp it — alf] for Canchy’s distribution (22)

x(ﬂ _ exp hl—‘t] :
14 ot for Laplace’y distribution. (23}
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Show that (neglecting gquestions of existence and convergence)}
K1 = g1 1= K1
ke = pg — 1’ #g = ez 4 x1f (24)

k3 = pg — Bz + 2 ps = a3+ Bxa + 2t

*Exercise 9, Show that

Y2 Eyalt a
=1, el = [Z0] ey [0 220]
EYe . RL <\
bl =1, iz} = [FT;(}]_ i) = [g—z(ﬁ)] , O e
. 2! 2
@ =1, i = i 20| e - - [%@L @)

Check these formulae for the distributions mentioned In Exgréise 7.

*Kxercise 10, Often a probability problem may ksdnore easily solved by
first finding either the generating, the moment ge:péfatmg, or the characteristic
funetion, Tleduce from (4.3.6) o differential equ;}%-i\(?ﬁl for the generating funetion
¥{u}, solve it, and obtain (4.3.7) by expandipg,j:;he solulion into a power series

e

in . N
RN

§5.3. As stressed previously, @J{c’lis}tribut-ion is not uniquely deter-
mined, but only roughly cha;'a’cté"rized, by any measure of location.
However, for practical purgoses, it is often sufficient to know the
value of such a measure,¢g:, the mean, together with a measure of
dispersion, ie., of how\huch the probability mass is spread about
the chosen measurendf location (although, of course, ®() is mnot
uniquely determifiefl’ by these two numbers alone). Here also we
may choose thig :gﬁéa.sure in infinitely many ways, and again preference
is only a qu@{&i;’m of convenience. In practice the following measures
are used:\thé mean deviation, le., E}TL{|x — ,u|}, 4 being the mean
value;gt:hé' dispersion oix}, Le, in the mechanical picture of §4.6
tha/stare root of the moment of inertia of the total probability mass
with” regpect to z = p; one bhalf the half-width, v, ile, v =
¥4 (t, — ty), in which #y, i are the two roots of ¢lt) = Ytuum, Cmax
being the maximum value of (i) assumed to allow only two rootg in
this equation. :

Other measures uscd are the semi-interquartile range, e,
%(t% - t’zi); in which {34, {'}ir S&t'iSfying @(i) = %} (I)(i) = %J rgspec-
tively, aro called the quartiles; or more gencrally any semi-inter-
percentile range, i.e., 4{1—g — o) in which t,, satisfying ®(f) =
# <1, is called the percentile or fractile ¢orresponding to the fraction
8 Gf 6 =p/10, p=1,2 -+, 9 tsis also called & decile); cbvi-
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ously these concepts are generalizations of the medinn, which is
exactly £;. (We note that for discontinuous distributions ¢, need
not be uniquely defined.) If x is bounded (cf. Example 1, §5.1)
one-half the range, i.e., 14(G — ¢), is sometimes a convenient measire
of dispersion.

Sinee the rules of caleulation are especially simple for the dispersion
a{x}, this measure of dispersion is used mostly, althongh others are
also used, e.g., the half-width is f requently used in physics (of. Example
10). From the definition of the moment of inertia of a body o M}, or
oz, or briefly o, is defined byt \

4
< ..”x
-

. g E {t: — )% for discontinuous (li@ﬁhutﬁiﬁns
ailxl = 5. .‘;'\ (1)

f_ L= wie® dt for continuous djétrlbu tions

(t, ¢; are defined in §4.3, o() in §4.4, and p‘m\ﬁhe mean). 6 = ¢/uis
called the relative dispersion or coeﬂi@ie.n‘f, of varialion,
Example 1. Tor g eontinuous disf‘ribution (1} shows thuat, owing
to the piecewize continuity of go(t).j—};:ﬁ, ¢ >0, On the other hand,
for a discontinuoug distribulion %% may have ¢® — G, but then (1)
shows that the distribution isthb causal one, B(f) = ¢{t — ), (£.3.3).

We see from (5.2.1) tha‘f\}g may also be written
oia) = amf(x — w2, @
(Thug o* is ¥'s c;;:nitrﬁl moment of second order, ef. Example 2, §5.2.)
- Exercise 1. .\SEKOW that if ¢ js a constant,

N o*las} = ads?(s) @

QO oHx + 0] = o2 Y

& x}. 4)

li:ime:i-cisc 2, By the relative dey
\S}c‘n\v that Miy} = 04nd iy} = 1.

1zéd) random varighle, We see that

%ero point and the seals on the ¢
Exercizse 3, If 5 normalized

the probability density wif}, sho

iation of & wo understand v = (3 — /o
¥ is said to be a normalized (or standard-
t0 normalive x simply means to choose the
~axis in an especially convenient way.

vuriable 4 has the distribution function it} and
W that = = oy 4 4 has the distribulion function

, the probability densityl @ (i £
o

gf
- — ), M {x} =g and ez} = o
2 : .
ﬁ; : 1tseltf 18 called the Yatiance of x, 73] x}. o is nlso ealled standard devia-
fused ff?h';ef %-unare deviation (or simply mean devistion, not to be con-
L at defined above) o fluctuation. Also it g often denoted by
Dix}ls for the use of {1

instend of ( ), ¢flp 55 Fre . : z
. r CLL - Irench, dispersion, &cart
quadratique moyen, Germa.n, Streuung, mittlere Ahwcichung.
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*Exercise 4. If & normalized variable y has the characteristic function x, (1),
show that ¥ = oy + p has the characteristic function x;{f) = e . (o).

For an arbitrary eonstant, ¢, we have the identity

Lx—a)z—((x—#)-l"(u—a))z
=(x—w?+2x— W —a) + k- at

Taking the mean of both sides we get

2 2 2 &
i — )f) = o=} + (o — )™ )
l { X
Exereise 5. Verify this, What is the corresponding thcorem Un{h{)mmtb of
inertia (Sieiner’s theorem)? m."

If, especially, we put a = 0 in (5) we get the lmpori@ﬁt relatlon often
used for the calculation of o

oz} = m{x®} — m%@h (6)
Emmple 2. From Example 2, §5 2\?&3 gee that this may also be
written ¢? = ps — ui° or, from Lxere:ge 6, §5.2, o = &y

Exercise 6, Show that we also h&ve’
2x ﬂéﬁb x(x — 1} — s — 1, P
which formula is often %ﬁe« eonvement than (6), especielly for discontinuous
distributions.
*Example 3, .\Erom Example 2, §5.2, we sce that (7) may also be
written o2 _,g@j‘— wilpr — 1)
Elamp{e 4. For the variable x in Pxample 2, §5.1, we have from
(5.1, 3)
\.cr{}=(1—8)29+(0—6}2(1—8)=6‘(1—9). (8)

\Example For the variable & in Example 3, §5.1, we have from
- a well-known algebraic theorem

~ p p - 1)(2v 1
m{x2}=2£2irwl=ﬁ————-—( + )( + )r

P 6 y °
i=1
Le, from (6) and (5.1.4)
NEr+ 1 (r+1V _ A1
ppey - CEDEED (Y LT ®
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Example 6. For the binomial distribution (Lxample 2, §4.3) we
have, from the binomial theorem,

Mixx ~ D} = Ei(ﬁi - 1) (:) (1 — ) =

i=0
p(p _ 1)82 i 2 (I’ - 2) 6;;—2(1 __ B)(»—?)—(i—-ﬂ) — V(V _ ])92,
o\ 2 O\
=42 X \\
Le., from (7) and (5.1.5) ¢\
Plel = = D6 = Go6s — 1) = g 2B ag

Later we shall give a much simpler proof of this fm\-ii&;u ‘((1{'. Example
1, §6.4), po

3O
Example 7. For Poisson’s distribution (E-xamplc 3, §4.3) we find

- W “;'\: o - it ‘
Mix(x — 1)) = Zf@ - 1)3—?%&—»”2; )
ie., from (7) and (5.1.6) {’;‘i”:’"
“2{”}.5\‘3"51 Bla = 1) = g (1

Thus the relative dis éiéﬁ\C)n 86 =0a/n =1/ i.e., & decreases for

increasing &, which‘m ns that the probability mass becomes more and
more concentrated about 4.

Example I?.g \For Pascal’s distribution
the same dgxice, putting /(1 + u)
M { ) (F\xgn}mple 7, §5.1)

O

(Example 6, §4.3) we find by
= ¥, a8 was used in caleulating

-«

M — 1)) = Y i - 1 L(__ﬂ )*
‘i\‘{f ;1(3 )1+f*‘ 1L+ g

2t g2 Z : 2 42 1 2
1 —-—2-. r = — _ -'“—2 —_— = 21"‘ L
+pd:c_o 1+ pde?1 — 2
ie., from (7) and (5.1.8)
a*{x} = 20 — p(u — D= p? 4 (12)

Example 9. We shall later soe (§7.3)

i that f : Istribu-
tion (Example 3, §4.4) the at for the normal distri

parameter ¢ is just the dispersion.
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Example 10. For Cauchy’s distribution (Example 4, § 4.4) we have

1 {F dt a [ zide
2 = - 2—-.__=-_[ =
o {x) i f_w {t — u} s a _2}1)2 Y I

&

)

aﬁ

c —arctanal =2w —af= o, (13)

T

Thus in thiz case the dispersion does not exizst. On the other hand™\
one-half the half-width is easily calculated and found to be equalj;o},
g0 that thiz is a convenient measure of dispersion for this dist-;ibi}tjon
which i3 often met in physics. \ V
Exercise 7. Bhow by means of the binomial theorem that for ,Pﬁya.’h distribu-

tion (Lxample 7, §4.3)
Mixix — D} = A F80mE W

ie., from (7) and Dxercise 2, §3.1, X \%
(#) =l + B0 N (14)

which conlains {11} and (12) as special c&scs,@s% should (why?).
Exercise 8. Show by means of f\.ppendlx‘l and Exercise 2, §5.1, that for
Laplace’s distribution {Example 5, §4. tlJ

24{ L 9,2 (15)
Exercise 9. Show by meany ‘ON]JPBUdm 1 and (5.1.10} that for the distribu-
tion of Tixample 2, §4.4, \\\
N 1
RS ePlx} = (16)
P\ \./
*§5.4. By moa‘n%*'of Sticltjes” iniegral, defined in §4.7, we define for
an arbitrary x{“}}mbutlon

‘:"\ po= aMix) = f_"w £ d3(). (1)
N _
FUI\%} éﬁ“bitra.ry function ¥ = f(x) we then have
miy) = oif) = [, 50 d8E). (2)
Putting y = (x — p)% we get
e} = [7 @ — 0?20 3)

Fory = x* we get

ot} = f_': t* d®(t) - RE- (4)
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Fory = ¢%% we get

g {eit?) = f_’“

e

e dd(z) = x.(t), {8)

and so forth. We leave it to the reader to check that these formulae
reduce to the previous corresponding formulae for discontinuous and
continuocus distributions respectively.

§5.5. For a two-dimensional random variable 5 = {xy ¥} we again
define the mean value, if it exists, as the cenler of gruvity of thewhole
probability mass, i.e., by its “static moments” with respech o the
& and u-axes: O

al

P ;

. o

3

(55w 3 3 -

f=— 0 f= — T — e je —{g

a

- RS
( Z b, E u,—p.,-) Jer discontinuous dis-

= _ f=— j=— e A)
s} = ) = o’{,\ tributions, (1)
( ““‘w {_mw":':o(ts ’L{f}\di\ifu,f_: f_: tp(f, 1) d.idu-) =

(f_ RHUN 'f_ ey (1) du) for continuous
Y distribnlions,

(For the definition of t-hg'kgf:térs, of. §4.10-§4.13; in gencral, the con-
vergence is agssumoed jw:\be absolute.) Thus to caleulate omis] we
need to know only the'two marginal distributions, since from (1)

TE] = (oo, ) = (¥, iy @
Q¥4
Emmp‘lx L Tor the two-dimensional normal distribution (4.12.7)
we gee ghr:éctly from the two marginal disiributions caleulated in
(4.13..6)}@11(1 (4.13.7) that the parameters p, and g, are just the two
components of Mz},
. :f}ﬁ%am[lﬂ.e 2. H we form the means of the conditional distributions
\ngr mmpl}mty we consider only the continuous case, §4.13), we obtain
two ful}ct-mns which are called the regression of x on y and of ¥ on %
respectively, provided that they exist:

M {afu} = f_”m o) dt = () )
Miyll = f_ﬁ woult) du = 12, (1),

We note that in general these two f

! unctions, { = p(u) and u = w1
are nof mutually inverse functions, The graphs of the two functions
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are called the regression curves. TFor a normal distribution, espe-
clally, we see from (4.13.13) and (4.13.14) that the regression curves
are straight lines intersecting in (pz, py):

pe{u) = ps + p Z (w — .u'y)
Ty

., (4)
py(t) = py + pf (t — is)-

Also for non-normal distributions these straight lines exist {cf. QB\f;)\
and arc ealled the mean-square regression lines, and the cocflilents
of u and ¢ arc called the regression coeflicients. We note{cglat“the
normal regression curves coincide if and only if p = il,.\},“waever,
in that case the whole probability mass is concent:fajbe\sl along the
regression line; i.e., x and y are proportional, and therefore the dis-
tribution reduces to a one-dimensional distribufiog® 'x(cf. Example 1,
§4.12). The concept of regression plays an important role in statisties.
For further dizcussion we must, however\ngfe’r to a textbook in sta~
tisties, e.g., that of Cramér. P \4

For a function w = f(z) = f(z, y) gl t¥e random variable 5, where
w0 may be cither one- or two-dimensional, we define as a generaliza-
tion of (5.2.1) the mean of w, if @t;ex“ists, by

A =
§ E Fts, ui)eis %)

Miw} HEEL ===

O f - [ (8, welt, w) dt du.

For it can agai :f)’e\ ;:hown that this is the samc result as we would
find by first sedrking out the distribution of w (e.g., as digcussed in
§4.14) aq(k on applying (5.3.1).! We stress that in general we have,
of. (5.2,00

~O" o if(z)} = f(nis]). ®)
Ill\]{e next chapter we shall investigate the two simple functions
wW=x+yandw =x-7v.

*Example 3. The quantities defined in Example 2, §5.2, may
easily be generalized to two-dimensional distributions. 'Thus, for
continuous distributions, e.g., the moments of order & (with respect
to the point (0, 0)) are defined, if they exist, by

Mirymy = [ [T drets pydedy,  Lm=ko )

1R, ., y ; .
See, e.g., Cramdr, Random Variables, p- 19.
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Next the characteristic function is defined by

Miexp [((tx + uy)]} = f_z f_: exp [1{te + uyllelx, y) dedy =
X_.‘.;-x(l; TLJ, (8)

which function of ¢t and u is seen to exisi for all values of ¢, % and all
distributions. If it may be expanded into a power sevies of 4t and 7w,
the coefficient of (i¢)'(7u)™ is seen to be the corresponding mament
Mixly™},  Also in the two-dimensional case the distribuiion fugetion,
®, is uniquely determined by the characteristic functin';yi,: & being
obtained from x(1, ) by the two-dimensional generulizatioiiyof (5.2.14)
and (5.2.15). . \ +

S
i

*Exercise 1. Show thai the characteristic Tunetions o o{b} two marginal dis-
tributions is simply y.(f) = X=pf, 0) and x,(20) = Xzl 8RSy rospectively.
*Exercise 2. Show that the characteristic funstielnb! the twolhnensional
normal distribution is the simple generalization of 1’{\2,'21)
Xealty 4) = exp [{(ust + py) — YRS ot + ), )
NS
. ] ¥ 4 v \y
§$5.6. In the mechanica] pisture Qf’x§\4‘6 we may also gpeak of the
four “quadratic moments” of thelprobability mass with respect to

(#z, uy), thereby obtaining & natival generalization of Lhe digpersion
of a one-dimensional distribu{rg}'n i1

T~ ) =
SO — 1)) = gy = 02 )
A~ w2y ~ 1))

- X N/
Next we oty dice the correlution coeflicient p{x, y}, p,,, or bricfly
o betwee9~giand ¥ by the definition

I

Bry = Py,

I
ol y} = p = Pov, @
o 20y

~lZp=1. (3)
Exercise. Show that if o and y are proportional we have equality in (3), i.e,
p=1 for  x = g2
{4)
a==1  for 5= —a’y,

where « i3 gn arhitrary reaj mmber {5 @),

Yot and 5,2 are ealleg th i
g ¢ variances, . = . the
covariamees 0T {x, yi, °e% Viw} and fy), and Hay = b
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In general, o < 1. In §6.2 we show that if x and y are inde-
pendent, o = 0. Thus p may be taken as a measure of the dependency,
or correlation, between x and ¥, henco the name. However, the con-
versc is not true, Lo, if p{x, ¥} = 0, # and y need not be indopendent
(ef. Exumple 1, §6.2). If p =0, « and ¥ arc sometimes cailed
wncorrelated.

Example. For the two-dimensional normal distribution (4,12,7),
the expressions (4.13.6) and (4.13.7) for the marginal distribut-iQns
show immediately that the parameters o, and g, are just the qu:id%atic
moments defined in (1}, Later we shall see (§7.6) that the p\aﬁémeter
p ig also precigely the correlation coefficient defined in (2) O

We leave it to the reader to generalize the contens. qf §5.5-85.6

from two- to many-dimensional distributions. K7,
L W4
O
N
) x;\\.,
O
N
N
«:‘. "o
\,:\‘“
&
O
LA
AN
x;\ml
O~
Nos
O
R\
w\”w



6.

MEAN VALUE AND DISPERSION OF SUMS,

PRODUCTS, AND OTHER .FUNCTIONS\
N

§6.1. If in (5.5.5) we put t0 = x + ¥, we get (z-mssumi;né”the ¢on-
vergencies to be absolute) A\

hd g = ::\\ "
mix+ ¥} = E E (t: + ujdpi; = E ‘ﬁsg\.v-l- z Uypy =
= —w jm AN PR
Y ssh +ooly) Q)
and \~;\ g
A\

Wia b= [T f7 @+ welt bl =

[ ey it -;-»)(:w oy (u) du = Mix} + miy] (@)

for discontinuous and continuous distributions, respectively.
r{‘h@ mean ?»'9'3%6 of th @um of two, not necessarily independent, random
variables x and y e‘s’&q@a’l to the sum of the respective mean values

SOz -y} = onia) 1 auiy). @)
Exercise. 8R0w that s, defined in (5.6.2)

may also be written
$

£
N

By = by = My — O (w )Ml ). @

Exgzaple. We can now prove (5.6.3). Tet o and & be two arbi-

t;@"j"real numbers, and let us consider the function
A\
V F=is~ o+ (y — u)b)? 2 0.

Forming the mean valye on both sides we get

MF} = (e — #3)2}@2 + 29 (x — pe){y — £y) bab
+ m{(y - ﬂy)ztbz el 4 2#33@5 + P'yz/bz z 0.

The cnnd.i.t-ion that this homogeneous quadratic form in ¢ and b be
non-negative iz then

2 Koy’
Hoallyy — pazy” 2 0, le., Ty

Hzagthy,
72

=p'<1, QED. (5)
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§6.2. If in (5.5.5) we put w = x.y, we get, now assuming & and
y to be independent (and the convergencies to be absolute),

Miny) = )Y e = ) tew ) ues = Wixlouly)
f= - % frz = im - Fe=— =
iy
and
Miayt = [ )7 et wydrdu = 7 tetydt [7 wp,w) an

= x| 9LhD (2)

for digscontinuous and eonlinuous distributions, respectiycljy.“
The mean value of the produet of two independeut'mn\dom variables
¥ and y is equal lo the product of the respective meay, -vEx»I-z?:és

Mizy} = MMy LD (3}
We note that (6.1.3) and (3) have no a@a{oé‘ues for the mode or the
median. This is the reason why the mehn’Is as a rule preferred as a
measure of loeation. Trom (6.1.4);3&:&'%6 that the necessary and
sufficient condition for (3) is thatyx and y are uncorrelated, ie,
p{x, ¥} = 0. Thus, if x and yjé’ré’independent, they are also uncor-
related, but in general the cemverse is not true, ie., ftom pix, ¥} =0
we cannot conclude that y«and y are independent.

¢. &\
Example 1. For t;h'e}\vo-dimensional distribution given in (4.12.8)

we get (from symmétry p, = p, = 0)
\Y;

W21 = w u duy

N - ——— =0 cY
\::I';‘?y Tf_ﬂtdf[.m(1+t2+i{rz)2
because‘t‘b’e\mtegrand in the u-integration is odd. Since o, und Ty both
eXlSt:EﬁhQ' respective integrals being convergent), p BXIStuS' and 1 = .
HéWever, x and y are obviously not independent in this case since
#(L¥) cannot be written as e, (e, (1) (cf. §4.13).

_ Inspecial cases p = 0 may imply that x and y are independent, e-g.,
¥z = (x, y)is normally distributed (cf. the cxample, §12.7). For, in
this case, (4.12.7) shows that for p = 0, o(f, w) = ex(tley(w), ie., x
and y are independent. However, because in practice it is often
reasonable to assume (x, ¥) to be normally distributed, or because we
Terely want to make use of (3), we may often treat x and y as being
1'ndependent if p =0 only. Thus the correlation coefficient pluys an
mportant role in many statistical investigations (cf. $9.5 and §11.13).
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Exercizse 1. For arbitrary constants ér, @g, bi(>0), and by =03 slow that

uw=mm4*WMWU}=WM—mMy—@N~WM—Mdﬂb~g

and

fx—-——glalﬁ y"‘—'"b_z ag} = plx, ¥}, {6]

“Example 2. From (3) follows an lmportant property of the
characteristic functions (Bxample 2, §5.2) which indien tes 1..{1L’5~1\great
value. Since, for two independent random variables x ;uni\,?y";,
Xepy(f) = {70t} = M {eiot . vt} M { ¢4t} 917 | o) ii&g{'i‘.)xy(ﬁ): (7)
the characteristic function of 5 sum of independeut;%udc)m variables
is equal to the product of the respective charactemgyh functions. Com-
paring this with (4.14.6) we see that it is muplfsimplmr to form ‘the
charactoristie funetion of & sum than to fqrm\its distribuiion function.
(The same law obviously also holds for the gtnerating and the moment
generating funetions.) We note that\the logarithm of the c-harf'ic-
teristic function of & sum is the sumf-the logarithms of the respective
characteristic functions, This al’é:(j’f]olds true for each of the cocfli-
cients in the Dower-series expaxféi'c)n of a characteristic function—-hence
the name “semi-invariants’’ g “cumulants’ for these coeflicients (cf.
Exercise 8, §5.2), \\

*Exercise 2. Let iy '\\ » %r be » independent random variables with the

characteristic functiqns xrft), - - . x+{t). Then show that z = aixy + - "+
8y%5y Where g, . . 3Ny, are arbitrary constants, has the characteristic function
{ef. Exercise 6, $5.9)

O X = (@) - - (0. @

ring S/

c}séw'i. For the product of two in

C dependent random variables we have
na suchs{h\ple expression for the character;

I s electron avalanches in Geiger-Miller counters, and caseade
\s.:h‘ewers I cosmic rays, Here one primary “particle” (c.g., a neutron) causes
Process (e.g., & fission chain) in which the primary particle disappesrs, but which
i tion of a corfain numboer of secondary “particles” (6.4
the neutrons produced in the chaip reaction}, Let x, ¥, and = be the random
varisble which gives the number of primary particles, of secondary particles ore-
ated by one primary partiele, and the tota} nuwber of particles ereated, respectively,
and let . (f), vy(t), and v={} be the corresponding generating functions, Then
show that,

Y2lE) = valyy (1)), @

By mesng of (5.2.25) next show that

Mfe} ~ O [x)ompy ) (10
o3z} = o lx}omtiy) + o {yiom e}, ab
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§6.3, From the foregoing results we find for the dispersion of two
random variables x and ¥

o*lw =y} = al + oyl + 2{x, yloislaly). (1)
This we shall call the variance law.

Exercise 1. Vorify this, Tind the corresponding formula for o%fax + by},
a and b being eonstants.

In particular, if £ and y are independent, or only uncorrelated’,@
becomes O
oHx ¥} = o*lx] + oyl A2

for Lwo uncorrelated random variables the square of 3h<d:&'§persifm of
the sum is equal to the sum of the squares of the two sepdytie dispersions.
We note that the right-hand side of (2) is the sam€'whether we have
+ or — on the left-hand side. Thus, in genem],\the relative dispersion
of the difference is much larger than that of the'sum.

Exercise 2. Let us consider a throw with t“fb@xce, and let » and 5 denote the
result on the first and second die respectively. {Then from (5.1.4) iz} = My}
=14 and [rom (5.3.9) ¢%{x} = 2|y} = 33fa * Find the possible values of 5 + ¥
and x-y snd their probabilitics, andhfrom this result calculate Mix +yi,
Mix -y, and #2ix + y}. Check that these results agroe with (6.1.3), (6.2.3),
and (6.3.2). N ,

O\ -

§6.4. The foregoing formiilae may immediately be generalized to
suns of more than two rafidom variables. Let xy, %2, - * ©, %, be »
arbitrary random varables with means gy, g2, - - .+ ; & and disper-
8ons oy, 03, . , o0 and let ay, as, . . . , & be v arbitrary constants.
Tor the 1'a11dopz\zvariable

Q" z= a1%1 + asxe + 0 7 0 T Gs M
we t-hcnwh};}fe

m\ ) gy = Mizl = aypg + aopa + * 7 0 T Gaths 2)
ahd ihe general variance law
o' = a¥{x) = a2y + agler® + - - -ttt
Qaazpracier + ¢ 0 0 T 2a1a.01017, T
. O R N o/ W 1 9 U [ - 0 (- (3)
in which we have put p;; = plxi 2.
Exercige 1, Ferify this.

In particalar, if 1, - - - , ¥, are uncorrelated, i.e., two-by-two uncor-
related, oy = 0 for ¢ = 7, (3) becomes

22
0.t = ay20y? 4 asles? + ¢ - ¢+ et (4}
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We often find cases in which in {1} gy ~ pp ~ + - - [T T
e n and =] ~ const »
and a1 ~ g3~ . ThEI.l Miz} ~ const » o lx] ©
Thus for the relative dispersion of z we have o¢/p ~ const/ Vo — (),
Py

This Is the reason that, e.g., in applications of statistical mechanics
(ef. §4.16) the deviations from the means are as o rule negligible.

In{1)puttinger = az = + -+ = a, = |/4, 5 becomes the arithmetic
average of x1, - -+, x,', which we shall denote by &:

o &\
e o e R T A\
%= . ’ (5)
v )
From (2) we then have O
" Lo ’ ———
m{i} — f-‘l+ﬂ-.+ ‘i_# - m\tx} (6)
¥ & ®
Furthermore, assuming x,, - - - , %, to be unggrrelated we have from
@ 7\
9= 0'12 + 0'22 + T ‘—Oi’{fﬁ-z 12— (v-
iR} = - TNy = et [y
AN v

These formulae are of special interést if we interpret %1, x2 * * *,
*» a8 » independent observatious'ef one and the same random variable
x with mean g and dispersiofte,  Since we then have py = po = * -
=t =pand gy = gy N =, = o, {6) and (7) reduce to

K

O mir) = (8)

O ag{'} =

(9}

"'_qwt

A/
These formulat are of the greatest

¢ importance in the theory of errors
and el%ﬁg’we {cf. Chapter 11).

E}g}‘q\i‘se 2. Often we do not form the simple average (5), but the weightet
average
N
@ 4 g S PILE o par, (100
\, 1 + ot + Y
in which gy, - . . » Po are arbitrar

. S P ¥ non-negalive constants called the weights:
Find m{z®} and o {29 in the general case and in the special case pp = B2 <
" + = pand 1 =gy = .. o=

= .

Exanflple 1. The above formulae are often more convenicnt for the
evaluation of M{x} ang o{x} than the direct evaluation from the

defining equations, e.g., in the case of the binomial distribution (cf.
' Also often called the meqn, 1y order not to confuse this word with its other
application, M iz}, we gha)
)

always speak of : ae like (5} (cf
footnote 1, p. 55). ¥& speak of an avergge in formulae It
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Examples 4, §5.1, and 6, §5.3). Let all the variables a1, * * * , x; be
of the type discussed in Example 2, §5.1; ie, from (5.1.3) gy = * - -
= 4, = & and from (3.3.8)0;," = -+ - =¢,F = (1 — §). Then the
random variable & in Bernoulli’s problem (§3.7), the distribution of
which is the binomial distribution, may obviously be written

x =% b+ x4+ 0+ (11)
Thus from (2) we find immediately

Mixl = vh, ®

m agreement with (5.1.5), and from (4} _ A\
O

a?‘{x} = (1l — §) PAY - {13)
. . "9, .
in agreement with (5.3.10), but by a much simpler ¢ l‘cil}iatlon than in
the direct evaluation. For the relative frequency}‘= x/v we have

anif = ¢ ’x‘\\j (14)
amcl “‘\z.‘

a1 28y _
) =~ (15)

a\Ve

Since ¥ = #(1 — 4) in the intervgl’:ﬁé ¢ < 1 has the maximum value
14 for 0 = 1%, we have A\

L\
%S} =
¢\

. \ _

*Example 2. Often it is convenient to introduce the moment
matrix of x;, - ¢ &3%,, i.e., the quadratic symmetric matrix of order

» (ef. Appendin2) defined by

f N {#rej\\é\}{f)’rﬁ{(xr — pr)ae — )t} =
) (e — SLmminll (D)

N

We then see that the nceessary and sufficient condition for x1, =« .
. . LI ) . o -

%, being uncorrelated is that M is a diagonal matrix. Sometimes We

also introduce the quadratic symmetric correlation matrix of %,

Ty Ky deﬁned by
C = {-&i] = {PM}; (19)

Trlg

1, (16)
Ay

2 (18)

2 g e
we = o xt = o, Hig = TR

n which we have put py = pifoes = 1. 12 denotes the diagonal
Matrix with ¢y, ¢9, + + - , o, a8 its diagonal elements, we have € =
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27t~ M- 277 (check). Thus another necessary and sullicient condi-
tion for 2y, -+ + , x, being uncorrelated is that € = E.

*Exercise 3, Offen it is useful to perform a linear Lransformadion from one
set of random variables x1, - + + , x,, to another set, y1, - - -, ¥y, where A need
not be equal to »:

v
¥ = fun + Efi:‘xn', t=1,2 .-, @0
i=1

fo; and fy; being constants.  Show that the quadralic moments of the s ard iven
from those of the «'s by N\

¥ ¥ ‘A i
s ‘-=E Zfra'_fxf#ij(:), re=12 ... X \J (21)
iT15=1 N
ext, using matrix symbolism {ef. Appendix 2), show thztt\{SL}} und (21) may be
written In the concise form O
Y=Fy+F-X (22)
and Al Xl A yl,’;'\\“
MY = F- MO, (23
» o %

§6.5. In §6.4 we have deducedasithple formulae to ealeulate M|z
and iz}, if 2 is & Zinear fun(:tiéﬁ‘of a number of random variables.
However, for practical applieations, it is also of importance to carry
out S}lch ealculations when{z\is not a linear funection. For example, in
phys‘l.cs, most measurements are inderect, being given as non-linear
functions of other, directly measured quantities, e.g., the volume of
a sphez:e, V = (w/@)d", d being the diameter; and the specific resistance
of_ 2 Wire, p =ARd*/41, R being the total resistance, [ its length, and
¢ its diameteri) ,

In pringﬁ]éle we are alse able to treat

T} _ such cases in which z = f(x1,

) .,,} 18 & non-lmez?r fyn(:tion, because from the distributions of

bl,t."\ﬁ” » % that of 5 ig given ‘(Gf. §4.14), and thus izl and ofz]s
,J} i .gene:l:al these quantities will not he gim ple functions of the means

Sand d‘SPe_I'SlOH? ofwy, « -, However, often the probability mass
of ‘.she Jomt distribution will be concentrated in a relatively narrow
region. about the point (u,, - - . » #) and 5 will be such a slowly
varying fUI}Cthn that within this region it may he ircated as a linear
function with sufficient approximation, \

‘ Let us consider only continuous distributions, and let us [irst con-
sider the one-dimengiona] case, » =1, e, z - flx). In any case
most of the probability mass of x will lie within the interval from
B — g t0 ¢+ a5 for some suitably chosen value of the constant o
(ef. (8.1.4)). Let ug assume, as is often the case in practice, that ¢
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is a small integer, say @ ~ 1. Since the probability of finding values
of x outside the interval [& — p| ~ ¢ is thus assumed to be small, we

need consider only values of x within this region. FExpanding z =
f(x) into Tavlor's serics from the point ® = u, we may write

= e} = fl) + (& — Wf (o) + —5— Sl ) 7'(), ey

£ being some value h( tween g and x. Now we need consider on
values of x for which ! = ,u| < 7, and, assuming furthermore, tha‘t&
is a slowly varyving funetion in this region, i.e., that

54 M| <ol f' )| or ol <<|Ji’x(i”{1ﬁ}‘. 2)

we may neglect the quadratic term in (1) and writé‘}

g~ flu) + (& —~ f-t)f’(ﬂ)& @)

From (3) we obtain \ )
mi{s }Nf(‘Tf"{ })\*“f(#) 4
f’(@}a{x )

Exercise 1. From (3) and Lmr‘n\sc 3 §5.3, show that the distribution of  is
spproximately given by ) \\
\ J

N\
Polrrl o f,{;:)\ ~ (“__ﬂ’“‘) ) 6)
I’z(h’,} ~ ( j {H‘} + j.(),. (,oz('u) Jfl(lr.t)| Pz f,(“) + ] (

Excreise 2, h;)\:. that Tor 5 = 1/x we have

’\\ -8 . &z &

i
. L | et | Sy, — ™~ (7}
\ Mz} " ozt & ie 2
Q)
aﬂd\’g&}ler&h/e thisresult to s = 2% 5 =0, £1, £2, - - -
' 4

Let & = flxy, - - - | x,) be such a slowly varying function in that
region, within which most of the probability mass is concentrated, that

2 may be approximated by its tangent planc. We assume the region
%0 be of the order |2 — m[ < ¢; and obtain as a generalization of (3)

d
B flay e, ) +;—:fl(x1 — )+ +a—i(x»—u»), ®)

0 which the partial derivatives have to be taken at the point (w1,
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). Assuming xy, - - -, &, to be uncorrclated, (S) gives

Miz} ~ fluy, -, ue) (9)

2 ,Jn I‘E
o?{z} N(g) o+ 4 (—(-'f") ot (10)
Ay o,

Exercise 3. Write down the expression corresponding to (10} if the assumption
of 1, - + -, x, being uncorrelated is no longer fulfilled.



7.

THE NORMAL DISTRIBUTION

§7.1. The distribution most important in both theory and practice
is the normal distribution, which from Tixample 3, §4.4; is a ebn
tinuous distribution with the probability density A\ ¢

{ (— )’ O
d® = ot} dt = ——— oxp [—- — | d A\
VQ‘.IT [ 20'2 x,\\\ 3
h : ,2“\\’
(= oo [2p2 — )] df)' (1)
™ x,\\"
In §7.2 we shall prove that (1) is noma{iﬁé&”to one as it should be,
ie., that i’}"
L f exp[é’@-‘—;ﬁ} dt = 1. 2)
‘\/271- T — = * ’:‘.‘ 20'
The graph of ¢(t) is also ca}h‘{i\(’;’&uss’ error curve, and the parameter
P\
N/
N ®
O 2

often used in qldiz}ﬁtemture, ig called the precision measure (s?nce
the larger 1&1},‘3 more rapidly the graph of ¢(?) falls off to 0). Since

olp + 4 v—%:*(.’p — 1), o) is symmetric about the line { = g; and,

sinee
o —1 t—n’
~O" - 2l [_ _}(t_p) @)
\/} & V'2r o P 20 .

and

~ W] ()
o) = 72%—39;(13[— @—2-;;1}(% - 1), (5)

©(Z) has one and only one maximum for ¢ = p and two inflection points
fort =y Lo

If, especially, p = O and e = 1 the distribution is suid to be norma-
lized (cf. Fxeroises | and 2, §5.3). In this case the probability den-

g1
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sity is denoted by
1 2m
v =y dt = = ®)

Nii

the graph of which is shown in Fig. § and which is tubulated in Table L

[oRi]
O
! | L] | —
-4 -3 -2 -1 4
Fic. 5. S
'x;\\tl
For the normal distribution funct'\oﬁ\x\*e have from (1)
\l
; 4 W y
N -l n
‘I’(L) = — \[ﬁu}éxp [ — e —’ ﬂ”, (‘)
’\/217 ':rx ::?&an Z(T_ .

which from (4) has only’ene inflection point, at t = p. Since ¢(f) B
symmetric about thg,\iiﬁf: t = 4, we have from (2]

\
J77 ety a J;f,j@(z) at= ["T M =
P,

P, P+ +eu—0=1 6
1€, in patiicular,

N 20 = 4. ®
N ~Fhts (1) is symmetric abous the point (u, }4}1.* The normalized &%

\> “tribution funetion, p = 0 and ¢ = 1, 18 denoted by

1 ‘ —_—prn (10)
T(f) = —- g
(@) v fwc 1

Its graph is shown in Fig. 6, and it is tabulated in Table L Woste®

* Instead O.f ¥ the lotter ¢ is often used for the narmalized normal d[;.;trilbutl_ﬂﬂ'
However, this is impossible here since by @, ¢ we denote an arbitrary distributio?
{for reasons mentioneq on p. 9] , v denote

*'We note that '
e.g., also for Cau

. . =
this holds for any distribution which is symmetric about ¢

chy’s distribution 4.4.9).
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chat bolh ¢(0) and ¥{t) approach their limiting values very rapidly
for t — £ =.

Often ¥(f) is not tabulated but the so-called error integral, or
error function or probability inLegral

3

o) = erft = —Z—_f e di = 2T(V21) — L. (1)
Ve

a

Exercise L. Verify this.
Exercise 2. If % i¢ normalized and normally distributed, show that |x| has @

distribution function 6/ \/5}. \\

oS 3

~
N ]

6oy |

N
A e
AN \

Exercise 3. Bhow that Qkan arbitrary normal distribution

i\
N — i —
3 & g(f U—*‘) and o) =¥ (t%) 12

(ef, Exercise 32:"‘§§3.3}. Thus the graphs of ¢{t) and B() are easily obtained from
Figs, 3 andebN\"

Excreigaed, Show that y = ax + b, & (=0) and b being arbitrary constants,
is alspdhermally disiributed.

Axercisc 5. If x is normally distribated, show that an arbitrary funection
¥N/(x) is approximately normally distributed with the parameters py = f{pz)
wnd oy = |f’(m)'ig$, if f sutisfics g{f”(,u)| & |J-F’(,u)-] {ef. §6.5; expand f(x) by means of
Taylor's theorcm).

§7.2, We shall now prove (7.1.2). However, the integral cannot
be worked out directly, but by using the theory of double and plane

!French, inlégrale de Ganssy German, Feb lerintegral. #{t} i1 tabulated
to 3 places in Peirce, 4 Short Table of Infegrals, Boston, 1929. The most complete
t"“lbles are found in Mauthematical Tubles, Vol. VT1, published by the British Asgo-
clation for the Advancement of Scicnee,
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integrals the evaluation can be reduced to the determination of the
volume of & body. To that end we form the square of the certainly
existing and non-negative number on the left-hand side of (7.1.2),
Putting in the first factor (¢ — x)/s = z and in the second (¢~ e =
¥ as new variables, we find

1 fm —zt9 1 f"’ —u 2
— € T idy —= € dy =
Vor J-= Vor /- A

1 = = o { 3 u'\
L /_m f_w“xp[ e @;ﬁgw. M

Thus cur task is to find the volume of the bodyylyig between the

A\~ 2 4y
whole zy-plane and the surface given by z = *7>9xp {— Ly _y_} =
£

1 P2 B\ -
o BXP | — 3 where r denotes the dLst.@cc between the points (0,
n\\

. N ) ; .
0) and (2, y). This volume we n\\-“'ﬁnd, owing to itz symumetry
with respect to the z-axis, by dividiag it into “infinitely thin™ eylinders,
the bascs of which are rings with“tadii r and » 4 dr, L.e., area 2ur dr,

0o

. . a\ B
and the heights of which 4Te T exp [— =
L\ 2’]1' 2

P N

eylinder ig ¢ exp [—\v— dr. Thus the total volume is, putting r*/2

= % 88 a4 new va.piahe,

]; i.e., the volume of each

)

N¥

S Y Eh wa
i :’{\“'[ T exp [— ?;J dr = [ e du = 1, (2)
\O” Jo ? 0

whig};’\'c\nmpletes our proof,
) ;~§;7.3. For the mean of a normelly distributed random variable %
\\vb find from (7,1.1)
4

i o Y
Em{x}z\/fm[_amxlf{h%&]dﬁ=

/‘» -+ we®dt=04+pu-1=un Q)

due to (7.1.2) and the g
persion we find by
88 a new variable

ymmetry of off) about ¢ = y. For the dis-
partial intogration and by putting ({ — u)/o =
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- _ 2
cr?[-x}=\/;—jrgf_w(t—p)2exp[*—(-t—2€—2u)]dt=
_ texp[— w?/2]

RGN R

—\—;zsz exp[—%zldu) =0+ 1) =¢" (2

due to (7.3.2) and the fact that u exp [—u*/2] = 0 for u — + 90.\\\
Thus the parameters ¢ and ¢ are so chosen as to be equal to the’mean
and dispersion vespectively. This is the reason for writing the secm-
ingly awkward factor 2 in the exponential in (7.1.1). A
§7.4. The probability that x assumes a value in t-h{i\}hr’val between

L]

-+

ty and §» is given by QS
1 s (i — p)®
Pty £ 5 Sty) = —— f exp [Af—“* dt. (1)
! : Voro Ju § i~\ 2’

O

\ }

This formula is of special interest forllp = ¢ — ao and > = p + oo,
o being an arbitrary positive constamt. Putting (f — ») Jjo = u a8 a
new variable, (1) then reduces taf%

*

Ny

RS
“

P{lx — ul = L A u—-zdu—fa —f_=
¢. &\

%

:‘s —_— == —a-:, 2
2%(@) — 1 e(\/?) @

A\

. I’ . ..
in which Sl;}gé.ve used (7.1.8) and (7.1.11). This function Is tabulated

838 funp\ “of ¢ in Table 1. In particular we find from this tuble that
) ) P(lx — 4| £ o) = 0.6826 ~ 25. (3)

Riyg probability that x deviates from p by less than o is roughly 23.
Conversely from (2) we can determine the values of @ corresponding
to given values of P, which we shall call the tolcrance limits, ie.,
_the limits within which x lies with a given probability £ (assuming this
Interval to be symmetric with respect to g). For practical purposes
it is, however, more convenient to find @ corresponding to given values
of the probability of the complementary event, viz., P(\x — p\ = ag)
= P(a). In Table Il we givea = a(P).! The most important values

! This table is reprinted from Table I of Fisher and Yates, Siatistical Tables,
Oliver and Boyd, by permission of the authors and publishers.
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are .
P a
0.001 3.20
0.01 2.58 (4)
0.05 1.96

which are called the 0.1%, 1%, and 59 limits, respectively.

Exercise 1.  Assume that in shooting with a gun the eonditions of Fxample 1,
§4.12, sre fulfilled. TFind the probability of hitting within a vertieal Adratie
region with center at (# %) = (g2, w), called in ordnance the L“.Cli‘t-f_‘l"O?XIIlpa.ct,
C.I, and sides 2a = 2, = 2y, AN

Exercise 2. Assume the same conditions as in the prcviousi“c;,'errﬁse. The
distance r from C.I, to the point of impact is then also a randow Yuriable. Tor
¢: = oy = ¢, show that its distribution js given by CN

1 t2 -
d¢=;§texp —5; LA\, {8)

. . w\/ .
Next find the probability of hitting within g cirdé{}vith center at C.I. and radins
R = g. N ’

. . . \S .

Exercise 3. In the exercise, §4.16, we {Bs\?e shown that, for a conservative
systf_zm consisting of N particles, the three vé&loeity components vy, vy, v, of each
particle are mutually independent. andhbint onch is normally distributed with
the parameters Br =y == .{ma“ U oy =g, =g (= \/};’1';-;,;}_ Show

that the random variable v = ‘Vvifﬁ + 2% 4 8.2 hag the Maxwell-Boltzmann

S 2 ¥ 1
distribution (4.8,2) with o =.$ = =./5{™ g=—1{(="1.
) \\ wab m NSO T T o2\ T r

Exa.mplf: L. By the probabie deviation p one understands the
50% limit in (2‘),\’}1'“-‘: a(l3), ie., pis given by

APl =l 2y = Ps — <, = 1. ()
From (2{)§&ﬂﬂ Table IT this gives
R\ A 3 .
O ¥ (—) =7 le, o =067449, mga. @

\ T

3

' 4
he wnterval symmetric about for which the probabilities of x lying within
and without gre equal, and equal 1o lg, is roughly 24.

In older literatyure ? 18 often used as a dispersion barameter in the

normal distribytjon instead of ¢, byt in hewer [iterature p is uscd less
and less frequently,

y .
M ffa ~ #}. From (7.1.1) we get, introducing —%(t-;) = u% 854
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new variable

{t - u)z:l 2a =
£ — pfex [ dt = & du =
'\/21ra‘/ l | P 2¢* VZ2r Jo

4
ﬁ ¢ = 0.79788¢ ~ -¢. (8)
T b

" Example 3. 8till another dispersion measure, often used in physies,
is half the half-width v. From o(t) = 'ge(u) we get (t — p)*/26° &\
In 2 1., N

=1ty — 1) = V2In2¢ = 1.17740. C ()

§7.5. The normal digtribution has a number of 1mgqrfant prop-
ertics. We shall state some of them here {cf. alzo §8:\2and §8.3).

The sum of twe independent random variablesx ahd v, which are
normally disiributed with the paramelers ug, oy a@d Hay Ty reapecmeiy,
18 nor wmally distributed with the paramelers ugig)= px + uy and opp,°
= o;" 4 [ 1;2. \\ >

The Iatter part of thiz theorem foHows from {6.1.3), (6.3.2), and
the fact that the parameters represedt®the mean and the dispersion
respectively. The first part follfﬁifé from (4.14.6). Inscrting the
normal probability density for qoz and g, this formula gives

1 (r—n.»c)2 (8 — 7~ )
Pryyls) = P _/'_ m‘ \F 20‘y ] (1)

Using the {,Ypressmns f Or yiyy, and o,y the expression in the exponent
may he rewritten H8™

N Sy

Fo N\t .
.(T___@:a 4 (t““* r— f-‘y)z _
N

N ° 2 2
\’ 3 cr;,,—_!:gf_ (T B o-_y"_uz + o8 — .Uy)) a (S — y.x;.y) .
\M\: 20,0 y2 0':4—1;2 2021y
4
- . . B [FEE
Introducing this into (1), putting as a new variable { = =7 (-r -
Ta0y

2 o o
fﬁ—pm_t%—gs “y)); and using (7.1.2}, we finally find

‘Tx-l—yz
i - 2 (8 — Hr:c-l--w)g]
Dyt y(8) = X T gt =
w4(8) 27rcrz_;_y f — = exp [ 2 26x+1,2
1 [ (3 - #x—!—y)z:l
————exp | — 5 |0 (2)
‘\/E-fr Crty 20‘::—}-?2

which proves our statement.



88 THE NORMAL DISTRIBUTION (Crar. 7

Example 1. It is noteworthy that this property of the sum having
a distribution of the same form as the two addends is not character-
istic of the normal distribution alone! For example, we have already
proved this for the binomial distribution (Exercise 4, §4.11) and Poig-
son’s distribution (xercisc 5 §4.11). It may also be shown for
Cauchy's distribution (cf. problem 41) and for the so-called x -dis-
tribution (cf. §$7.8, especially Exercise 2,

*Example 2, From the characteristic functions of the binomial,
Poisson’s, the normal, and Cauchy’s distributions {Exercise 7, 84.2)
and the theorem stated in Example 2, §6.2, it follows at once ﬁmt, if
two independent random variabies each has the same of thest\distribu-
tions, their sur also has this distribution. This fact ameng others
shows the great utility of the characteristic functions. N

: . 2o
Obviously, our theorem may be generalized to theMfollowing: If %1,
T X ure v independent and normally distrifabet] random variables
and if a1, -+ - | a, are v arbiirary constants, i&gﬁ

T =011 "-I- - \—}{a‘,x, (3)

s also normally distributed with the Javtmeters given in (6.4.2) and
(6.1.4). \Y

LN
"

Exercisc 1. Verify this.
Exc‘rf:ise 2. Bhow the following generalization of Exercise 5,871, Ifaxy, - -,
%, are mdependent and normallg'( distributed with the parameters gy, oy, - ¢ ¢,

Hvy oy, Tespectively, then an ax itrary funetion ¥ =fix, - - -, x,}is approximately

normally distributed with'b{éparametcrs

by = fluar, oo N )

and O
\¥/
af ey - - 2 RN 2
o = (‘j, At . ,m)) PR I (c‘if(m, ,#v)) o2 (5
\V E1 axv
iff varieg u‘h} é!owly _in the region, fx.‘ - mf ~ &y, in which the main probahility
mass ofyfbe »-dimensional randorn variable (x, - - . | 2.} is concentrated (cf.
§6.5 %ex:pa.nd 7 by means of Taylor's theorem),
\ Y . » -

NIy especially, in (3) we Put @y =gy = ... =4 = 1/v, ie.,

% = ¥, and interpret Xy, v - -

» %5 a8 v independent, observations of one
and the same random v

ariable x we have the theorem: % s normally
distrebuted with the parameters p and o/ 5.

Example 3.. Without proof we mention that we have the converse
theorem that, if the sum of two independent variables x and ¥ is normally

distributed, then both, x and y themselpes are normally distributed.?
LY, Cramér, Bandom Van'ables, . 51.
* Cramér, Random, V, ariables, p. 52,
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§7.6. The two-dimensional normal distribution is given by (4.12.7),
l.e.,

dd = (i, u) dt du =
Y
SIS I B2

Pmanay V1~ 0* 1— 5 2‘7

) (8 = pe) (U — ty) + — ) ” dtdu. (1)
a0y 20, O\
N

As shown in the example, §4.13, (1) is normalized to one, Le.,

{ \

| TG wydtdu = [ eyt = [ goy(u)\du—-l @

In Example 1, $5.5, and in the example, § 5.6, we havq vhown that the
parameters ju,, py, oo and g, are so chosen that thepndenote the means
and dispersions, respectively. Tinally, it may alsé be shown that the
parameter p is =0 chosen that it denotes tfle. eorrelation coefficient

defined in (5.6.2). \Q\‘,

*Example 1. To show this we ca}mﬂate, putting z = ({ — us)/os
and y = (u — p,) /o, a8 new xam@eb

3

ad
A\

ey = Mi{x — p)(y — “y)},:\‘“

T20y

- e ~
f f g _{3@(“ — yolt, u} dt du = PV

:
[ f.\;?yexp[ ﬁ(m -—2p'Ey+J)]dxdy' (3)

In order 't\\\ ‘evaluate this rather complicated double integral we

mtrodure»}\m new variables in order to separate them:
AN
’“\v*—w B tw p? — w?

A s 3 Y= ! 1o, oY ="
2 oppy + 7 = v?(1 — p) F w1 + ) (4)

H

Since in our case the Jacobian (4.14.2) is equal to
dx %

ax, 1) _ dy o

w, w) By Iy

|ay  aw

lH

=1 (5)

SR
=3

b
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and 1 — p* = (1 — p)(1 + p), we obtain from (4.14.3)

i — 2% f / (v — w?
¥ 41‘1'\/1-—p
o* w? .
cxXp [‘— 5(] T ) + 1_‘—-_,0):’ dy o =
Qg’_l_f f o
2 2r)-ox ).
1( p? w? )] d dio .
exp | — = Fo— )| " _ &
p[ 2Nl +p  1-, V1 p‘\/l——p""\

1 o o "‘\ ; ;
[ : O

i @ W

2r J—w J_ \

1y w2 )] d ’d}
exp [ AT T | e S
2re 1= VIR,
T A BN — 0 =i, @

which proves our statement, (Here @ have simply observed that
the two integrals in {1 of (6) give the “dispersions of a two-dimensional
random variable which is normlly distributed w ith the parameters

(tia, MHuy Goy Oy, o) = (0, 0, ,’l“—f“ o, \/1 — g 0))

*Ext.z:rcise 1., Appﬁndﬂx?l, We note that the expression in the exponential
of (1) is a homogeneous Auddratic form in (1, — B1) = (¢ — pup) and (fz ~ pg) =
( — wy): N\

2

2

F=1

Comparing w1 \( ) show that the guadratie, symmetrie matrix A = {an} of
this form 18\_1'\*@11 by

o 1 p 2
Ny 1 gy -
¥ 4 \ — 7, F
~O A= . @
/ - —25
cr;co’y Ty

Find the determina,nt, [4! =0, and show that 3 in {1) may slso be written

_ - V4 _
4% = ot w) didy = f [ 2 2 @il — p)(t; — #:‘)J dis dlj =

{V'2r)?

:=~1

1
(\/er)z [* % (T ~m*- 4.1 - fm:J] divdiz, (8)
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in which T and 30 arc the column matrices with the elementgs 1, fa, and py, uo,
21 21
respectively,  Tinally show that

At =M, 2
where M is the moment matrix defined in (6.4.17).
*Example 2, (Cf. Appendix 2). TFrom (8) i is now an obvious

generalization to deflinc a »-dimensional normal random variable
(%1, * * *, %,) 25 one having the distribution

d® = ‘P(ilj T tr) dzl e dtw = \§\
/_! I3 r :". v
|4 [ 1 E 2 ()
By aiills — )ty = wy) | dtr - - - g
(V22 p 5 £ 2 it 3 ¢ 1 \ &
Vid] »

1
(T/g:; oxp [— 5 (T - m)* - (T - m)] Cg{l'\\ ) dl,, (10)

. . . . . . 7 .

in which 4 is a y-dimensional quadratic, symfaetric matrix such that
the quadratic form in the exponent is never negative; for it can be
shown that »)

ol ¢

J

f_ﬁ ce /x elty, © * -, t)dh cdt, =1 (11)
zm’g@;;““- ceum)) =y, m) (12)
M = ({6 m)(m — p)}} = 475 (13)

(We note that (13) shm:v\s that, if 4, - - -, x, are two-by-two uncor-
related, then the x4 ﬁfe, furthermore, also independent.) To prove
this we need ug Qﬁ]& the well-known fact that a symmetric matrix
may be trunsfetfded into a diagonal one by an orthogonal transforma-
tion; ie., \v‘({\fﬁa.y introduce » new random variables, ¥1, * * * , ¥,
by the Qliif:’l,l\gonal transformation (cf. Exercise 3, §6.4)
'\
m\: 7 X —m =F - Y, (14)

\/’ 1 r1 v »1

i which F is orthogonal,
F-F*=F, ie, |F|=+1, and F*=F", (15)

and is determined such that

F* 4 F=F1'.4.F =D, ie, |D|=|FY|F|4 =|d4. (6)

Here D ig g diagonal matrix, the diagonal elements of which we shall
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denote 1/dy%, - - -, 1/d,%. Since from (14) the Jacobiun (4.14.2)

a(tl; Ty ti’)
3(1&1, R, ui‘)

1/dy » - - 1/d,, we obtain from (4.14.3} and (7.1.2

[ f @(51,"‘,33)df1"'dﬁ,=

Tl - e > ’\
—\/|—D|—--/ / cxp{—%U*-D-U—’dul‘--{Eju}\——-

=[F| = £1 and from (16) V|4 = V[D =

(\/2—‘7‘.) r o

&N
-
)

H (—1;— /"“ exp [_ u_ﬁz" du-s)i; I, (a7
e Vord, J-» 2d; :::\\ }

A
which proves (11). To prove (12) we note that {7 shows that

i . o)
Tlyed = (Vo) dy - - -4, f-a \L‘f\f}%
o)

i - uf A Ny
P =5/ 53| duw=0, r=1,2 - » (8)
2 ds

i=1]

ie, (Y} = 0. From (18pand (14) the result (12) follows at once,
Furthermore, (17) showxs.‘?};}at M® s 5 diagonal matrix with the
diagonal elements dlz,:\'\\v‘ s &% 1e., from (15) and (16)
MO =pl=fFi. 4. p (19)
From (19), (14(15), and (6.4.23) with ¥ and X interchanged the
result (13} fql{fg\vs at once, because
4@’"’; F-M®-F* < F.F~' g1 P = 4~ (20)

*E'xqfc‘i'se 2. (Ci. Appendix2). Show that (10) has the characteristic funetion
~\.J
}

v L »
. 1
7}’ wlty -+ 5) = exp [z E Hily — o 2 y (4 "‘J;.-:t;-zz] =
k=t

kEm1le=]

IF

exp i < T — %T* cA-T] (21)

{ef. Example 3, §5.5). Tf we know (21}, show that equations (11)—(13) follow (ck.
(5.2.27Y). From (21} it follows, furthormore, that the marginal digtribution of
each wp, k= 1,3 ... s ¥ 18 normal with the baramecters g, o5 (of, Exereise 1,
§5.5). Thus the characteristic function saves us from directly cvaluating the
complicated intograls hecessary for this result,
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For a more detailed dizcussion of the many-dimensional normal dis-
tribution we must refer to textbooks in statistics, e.g., that of Cramér.

*§7.7. We shall in this and the {ollowing four topics deduce from
the normal distribution some other distributions which are Very
important in the practical applications of the normal distribution
{cf. $11.8-§11.17). For later applications it will be convenjent to
generalize the normal distribution somewhat (cf. Example 2, §10.3).
Let » be a random variable and ¥ = G{x) a function for which — & <
y< o, afrs2bh(—w Za b= oo)andG’(x)>0forallfcin
region of definition.  We now assume that ¥ is normally dlstnbuted
which means (ef. §4.8) that x has the distribution?

4%, = o(x) de = \/} exp [_, 2% (G{z) — H

If7{x) = x, (1) simply reduces to the usual norma,l distribution.
\ n/

(1)

Exereize 1, Show that
MIG()) = Q{G(QN S @)

Next we consider n independent \ambles Xy * 0 ¢, &y, 81l having
the same distribution (1) (in the later applications x1, -+ -, %, will
denote # independent obaervatlons of one and the same variable x).
The joint distribution of xl, \\ , %, i then given by

4o = elry, « - - , Fn) dxl\ =

( \/%) exp[—‘ Z(G(m)—u)]H|G’(~’%)|d$1”' T (3)

Instead of x}}

©, x, we infroduce » new random variables defined

SN L GV e LC1) SRR
3 (]

a=Y s 0=g<=) ®)

i=1
v =(x) — m

u£=%‘_)_—-—rn (__1<u1<1) 1:..——1,2,"',?1. (6)
q

! For convenience we use in §7.7-7.11 the same letter for a random variable
and for the variable in the distribution function.
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Exercise 2. Show that

Mim} = g, riml =\/_- {7)
T

Next show that

ug = 0, w® =1 (8

and that this implies that [ug < 1, ie., that [u = 1is exeluded. Borause of the
two algebraic relations (8} only n — 2 of the 2's ure froe varishles. Lot us congider
Ui, Uz, * ¢, Uaes 88 the frec variables. Thus together with m and 4 w\r’;l}wc
introduced in all # new varisbles. Show that for the Jacoblan deperndinant
(4.14.2) ¢\

“\\ o
6‘(:51, o ,zﬂ} ] L }
= g7 2 ] FO. . @ 1Y O
ﬂ(m, g, w1 oo -, ﬂn—‘z) ¢ f(?il, e » Ha f"&{i ( )
. $ \ ’
ir which 7 is a certain funetion of the u's alone, which }ﬁ\&eed not work out.
Finally show that \/
(3
Y €6 ~ ) = ntm — WP (10)
i=1 \V

S\

\S
As a result of Txercise 2 we find frgﬁ;}:_l.li.%) that expressed in the
new variables our distribution ig A\

Vn nim — Tw}:“
\/Q‘NGXP[_ P ]dm]
N\

™V n—2 214
SO 2 v
qpr - .)'r otn—g1/2 \7 2¢0° | &
2 !

dcb:{

P
Aomst fn, w0y dus - - ),

\vhere“lil'{é constants have been chosen so as to normalize each |}
sep'aitiz;’gely (eheck this by means of Appendix 1), Equalion (11} shows
phatun and g are independent variables, that m is normally distributed

ith the parameters g and o/ \/;a, and that 4 has the distribution,
first found by Helmenrt,

1 f—1 2
d‘l’=¢(Q)dq=f_2 0 exp| - 2%
(—__ 1 2lr—21g \C 2c°] ¢
2

0=g< ), f=n-—-1 (12

¢ so-called degree of frecdom f = # — 1
‘the fact that ¢* is a sum of squares of the

Here we have introduced th
instead of n, which refers to
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n variables »y, * © -, v,, subject to one constraint given in (8) so
that only n — 1 of the »’s are free variahles.

Exercise 3. Show by means of Appendix 1 that
Mig?} =f% Mg = (F + 2)fe?, ie, oig?} =2ft (13}
Next show that

= ' 4
LG, \
N
3

0.2
gl = |F—2 | — al =
()c_._ﬁ)z '2..:\:’

(use Stirling’s formula for the approximate formulae). 4\

Exercisc 4. Show that the g-distribution (12) con“tfj\iﬂS some previous distribu-
tions: (1) for f = 1 the distribution of |a] when x is‘uormally distributed with the
parametors 0, o; (2) for f = 2 the distribution ‘('73&’})}; (3) for f = & the Maxwell-
Boltzmsnn distribution (4.8.2) (cf. Exercisc 8.4874).

Exercisc 5. Instead of g it is often ccszéJgiént to introduce

W

Sz%\"’f=n—1- ae)
Show that QO
\\ 25t
ais?l = o, o} = 2 (17)

and PN

R (f - 1)T |
A& iy |
N 9is) =-—2—\/§5~ p—— (18)

W
N (f"l)r 2
Sy | \
21\ 2 / r. (19

B T
2

*§$7.8. In many applications it is more convenient to work with the
distribution of g® rather than that of g. Furthermore, it is convenient
to consider the variable g*/¢%, which is denoted by*

' Although the application of a Greek letter for a quantity which is not a param-
eter, but a variable, is against our fundamental prineiple for netations, and although
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2

2
o=
0‘2

m

Exercise 1, Show that x® has the distribution

dq).: (p(x2) d(xz} = .__L_ (X_E) (F—2/2 exp | — i xz:’ fﬂ(xzj
() 2
e |} 22
2

(0= %% < w) (2
with

| O
Mt =f W) = T+ 2, e, 2 =2 NN @)

Puiting P(x®) = L e(x*} d(x?) we give in Table V x? aa;’a #nction
of florP = 95%, 10%, 5%, 1%, and 0.1%." Tt may b shirm that for
large values of f the variable \i 2x* i approxima:t«{{y“normally dis-
tributed with the mean V'2f — 1 and the disperfion 1. The x2-dis-
tribution has the important property that, if x *anti.? are independent
and hoth have the distribution (2) with the devecs of freedom £, and
f2, respectively, then x? = x,% + x.? hag' £Ehe distribution (2) with
f=h+h 0

Exercise 2. Verify this. (Introduce dh the joint distribution of x12 and xs*

the new variables %2 and P given by J{%= py? 5,2 = (1 — p)x% and integrate
over p from 0 to 1 (of. (4.14.6).) &N

Exercise 3, If yi, - - -, ¥n :ﬂ‘l{l‘.ﬂdependent and each normally distributed

with 4 = 0 and ¢ = 1, show that
R
AL SE L SN )
has the distribution (3) with the degree of frecdom f = n.  Then show that under
tke assumptions of §47
\& n
\/ q 1 . .
A’} x0? = -D? == 2 (Hay) — )2 {3

L 3 e o
Noo

has thui s&;}e distribution as

N q2 1 E
Q == z (Flxs) —~ m)?, (6

i=1

the only difference being that 2 has f = n, but x12 has f = 7 — 1.

*§7.9. Let y and ¢ be independent variables, and let y be a normally
distributed variable with iy} =0 and o{y} = as (g, 2 constant);
and let ¢ be a variable with the distribution (7 .7.12) with a certain
degree of freedom f. Then the normalized variable corresponding to

the notation x? instead of x is rather unh
2pply another symbol, since x* geoms to b
1 For a more detailed table gee Figher

andy, we have not had the courage $0
¢ universally standardized, )
and Yates, Statistical Tables, Table IV.
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y s y/ao (cf. Dixercise 2, §5.3). We now replace ¢ by s given in
(7.7.18) and call the result ¢:
y _ Vi

as a q
To obtain the distribution of ¢ we write down the joint distribution of
¥ and g. Next we introduce as new variables ¢ and ¢ instead of ¥
and ¢ and obtain from (4.14.3)
d = ¢(t, ¢) di dg = A

b i tz ] ) "s.;x
——rmw ) e (4 ) L e
Sl t o ¥ .‘;
2:-1'\1‘[( 5 ).2 x\\ \
(check). Integraling (2) over all values of g wouzeb the marginal
g v

14
distribution of ¢, by introducing (1 - -—) — =85 a new integration
‘ SVARVE Y

- "N
variable, .\\\\ )

(u)! A
] 2 »."'Eﬁ

db = off) dt = SR —
VG

: 2 0N f

(check this result by faéans of Appendix 1). This distribution is

called Student’s digeribution. We stress that it is independent

of both the paraméters ¢ and ¢, depending only on the degree of
RS 2 — {12

freedom . E‘?m& (1 + é_)

(—w <i< @) (3)

32
— exp [— E] we shall expect

o=

!
that the M}%‘hfibution is very close to the normalized normal distribu-
tion (7,16) for large values of 7.

PPN

i b m;},i;c 1. Verify this by means of Stirling’s formula,

The probability P{#) for |t = ¢ is given by
Py =2 [" vl @

In Table IIT we have given ¢ as a function of f for P = 10%, 5%, 1%,
and 0,19, Tt will be seen that for f—> « we obtain the corresponding
tolerance limits of the normal distribution (¢f. Table IT).

) I_A more detailed table of the i-distribution is given in Fisher and Yates, Sta-
iestical Tables, Table 11
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Exercise 2. Let m be defined in (7.7.4), g in (7.7.5), and s in {7.7.16). Then
show that

t="— A - T &)

5 q

V'

has the édisteibution (3) withf = n — 1, Next let ® be a varizhle which is inde-
pendent of m and of q and which has the distributio n (7.7.1).  Then show that

m— 7 (x) nn — 1) m — Glx) \\\ .
p= T i D - Gl (6;
f 1 n 41 q N
1+-s
”

A
QY |
N
3

O
has also the i-distribution (3) with f = n — 1. \
Exereise 3. Let x)3, 215, - - - » Xy a0d X9y 292y - - - xa42be Lwo mutually

independent set of independent observations of x having thityistribution {7.7.1,
4

Let mi and mg be the quantities corresponding to the twinael¥ us dof inedin (7.7.4),

and let s =q1/\/f—1 and s = qg/\/j:; be thex@réspunding guantitics as
defined in (7.7.16). Then show that &

¢
S
¢ 1 1
Mim, — ms} =10, clmis mz) =« /— + — (7
o Nar | ng
Next show that the “normalized” variable

s 3
‘Q

L S I T T

¥

= (8)
1 +i\s\ Vi VEAR PRem-tb
m g\
has the t-distribution, () With 7 = 1, 4. 7,
N\
*§7.10, Le{;;&is’bansider the “relative deviation” of G(x;), replacing
s by m m@:ﬁgéin cby s =g/Vn -1,
"\
A\

~?~:"1f'a' G(x) - m
riw-__\:,',:n 1 =‘\/£“_‘_a_q__—'_=—\/?—?¢u", '3:=1,2,"',ﬂ}

\/;

-]
i

@

where m, v;, u;, ¢, and s are al] givenin §7.7. It may be shown directly

from (7.7.11) that the marginal distribution of each r; has the
distribution?

t8ee Arley, Danshe Vid. Selsk, Mot
Here also the joint distribution of oo
r-distribution are Egiven,

fys. Medd., Vol. XVITI, ¥o. 3, 1940.
3 T2 3nd & more detailod table of the
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G
N . _i 1 24 * - ?.2 (f--zmd
1=l _ﬁ\/m.(f— ),( )
2

Exercise 1. Show that we have two constraints on the s

Yr=o  Yri=n @
E ) W
i=1 i=1 3"\3

ie., one more constraint than on the »/s, which iz the reason %\:’putting f=
n — 2 here. K7, \J
L

The distribution (2) may also be derived fromwthe !-distribution,
as stated in the following exercise.

Exercize 2. Show that # defined by \
N/
1

TS, Q
f o= n—2r L )

R -
Va-1-rmt b, &
&Y | 2
ol vy
AN\ n—2

LN\ =1
has the f-distribution (7.9.3) W@}? =n — 2, Next show that, when r increases
from ~4/2 — 1 to /7 A}, ¢ will increase from —w to » and thus that

Pirigr) =P (t’ ﬁ\—ﬂ A ) Finally, inserting the distribution for
CwWn—1 —r?

I and diﬁerentip.jiggg_. deduce (2}.

We note;{ﬁﬁ; the r-distribution is, like the #-distribution, independent
of both\ﬂ}é parameters p and ¢ and further that it will be very nearly
equeh\ Mo the normalized normal distribution for large values of f.
Th}\l?’:l‘obability Py of |ri = ris given by

P =2 VIFT L ) dr. ®)

In Table IV we have given r as a function of f for P = 10%, 5%, 1%,
and 0.19. Tt will be seen that for f — = we exactly obtain the cor-
responding tolerance limits of the normal distribution (ef. Table 1I).

*$17.11, Finally we consider two independent variables, g1 and s,
both having the ¢-distribution (7.7.12) with the degrees of freedom
f1and f 2, respectively. Introducing into their joint distribution the



100 THE NORMAL DISTRIBUTION [Cuap, 7

varigble w, called the variance quotient,

w =1 _ .[f_?ﬂ 0= w< ) (1)
82 frae

instead of gy, we get from {4.14.3)
2% = o(w, ¢2) dw dyy =

_— l____ (f_[)f[ﬂ Wil (g-_;).f—l’ ®
(l - 2) f2 ~—2),2% ip PR

7
- \.l A

f 02 . ()IQ
ol o o

. \ :
Integrating over g2 from 0 to = we obtain the'm‘lrcrum-] distribution

. b
of w by introducing (1 + h w°) 2 asqa}m‘. Integration variable
f2 2 R\\‘ »)
\ )
(f - 2) N
2 f;f:% i
— fz = fn S1 3)
L +--w
fa

{check this result by mesns of Appendl\ L).
Instead of w it is ofﬁw more convenient to infroduce w? denoted F.

Exercise 1, Sh(m' thj}t the distribution

of F' = a? is piven by
\</

o\ul (L“ 2)
A 172 21—
de = @(wa)@bj 2/ (ﬁ) _ﬂ’__]___m dlw?),
fl_'2 fz— 2 1 2 1 f1 2
N\ AN R
»\\, T=fi+f O=ul< =) (4

We'stress that, just s the - and the - -distributions are independent

of the primary parameters u and o, 80 is the widistribution. The
probability P(w?) of g2 Z w? is given by

Ploty = |7 oustwt) ). )

In Table VI we have given 2

A more detajled table s given
V (in which ¢ = w? o m.

as a function of f; and f, for P = 5%.
in Fisher and Yates, Statistical T'ables, Table
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It is assumed here that the numbers 1 and 2 have been chosen such
that 51 = g9, i.e, w2 2 1. We note that the wi-distribution contains
the x%-, and the ¢, and thus also the r-distribution as special eases.
Tor w = x/\/fl and fs — o, (4) reduces to (7.8.2) with f = f1. For
w={and f; = 1, (4) reduces to (7.9.3) with f = f5.

Excreise 2, Check these facts by means of the tables.

O
N e
\, ?
o
N\
>
A
\S)
Vs\ g‘\}
N
N\
S



3.

LIMIT THEOREMS

$8.1, Let u = f(2) be a non-negative function for which \i\
u=jt) 2a>0 {géztu

for some constant, g, and for all values of ¢ within a c{ermm region w,
Tor a random varlahle x with econtinuous ch'stnbut;}% we then have

from (5.2.1) RU\N
\" '
M{F(x)} f Ftelt) dt 2 f ga(,{z\dt = aP(x in w), (2}
ie., m&?\\w
Pl in o) g J1, )
< N‘ > a
Exercise 1. Show that (3) also heié‘s for diseontinuous distributions.
Ifi ln (3) we put f(x) = @— 2and Vg = &, wo obtain from
(5.3.1 C
& J \
Iﬁx —Mmixil 2 k) < g—k{%}: (4)

which mequa,l;iay*ls called Tschebyscheff’s inequality.

Exerclsn\ﬁ‘, Tind the sorresponding inequality for Fflxy = |x — g fx]® and

Va - K.

” If*we have a sequence of random variables x1, x4y, » + + for which the
Qéans 1, K2, "+ - and the dispersions o1, 63, + » - all exist, we find
from (4) that, if

M — 1)) = 6,2 —5 0, ()

then for an arbitrary, but fixed, e >0

2
P(|xi‘ — My 2

(6)

62 ]
We then say thas the random varighle %, — i, converges in proba-

102



§8.1 103

bility to 0.1 More generally, if there exists such a random variable »
that
P(lx, — 2 2 ¢ — 0, )
we say that x, converges in probability to 2. This is a very important
concept in modern probability. We stress that it must not be con-
fused with ordinary convergence, &, — x, where #, and z represent
pe=tb T

observed values of the random variables &, and x, respectively. E
it is cbvious that we can never prove mathematically anything abetit
the behavior of cmpirical values. What can be proved agélqnly
statements regarding the theoretical eoncepis of our model;:i}(:vér of
reality {ef. §1.1 and §9.2). A special symbol for “convergence in
probability” has, therefore, been introduced: K7, \J

P O (8)

or, more commonly used, N
£

X, —> X
it p
y—r o

(9)

SO
N\

*Exercise 3. Prove that a nocessary andsufficient condition for convergence
in probability is that, «(f) being the cangdhdistribution (4.3.3),

By, 30— e(0) (10)
LN e
for all fixod ¢ 5 0, or that "
PSS S pa— ) (11}
&\ T

for uny fixed &valuc whieh¥is o continuity peint of ®(f).
*Fxercise 4. Loba@indom variable x with mean y and dispersion ¢ exist such
that N
N omilr, — )% = otz —w] — 0. (12)

'\\*w y—
(We thr_\.n‘s;a} that %, comverges in mean to x.} Show that we then also have
Xp ‘—‘*k”.s;' o

Loy AN
N/

Example 1. Tt is easily seen that we may have s, — x, without

inp
one of yy, pe, + + - and oy, g9, + * * existing. For example, let us con-
sider a sequence of random variables xy, %2, = ° - all having the
Cauchy distribution (4.4.9) with the parameters p1 = pa = * * * =0

and @, = 1/, i.e.,, a,——> 0. In this case the defining integrals for

the means are undetermined and ¢y = oo = * * * = ; but, a8 dis-
cussed in Example 4, §4.4, we nevertheless have @.(8) _»:: e(t) for all

! Another expression is converges stachastically.
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¢ # 0, which from Excrcise 3 means that x, —— x, where has 1he
inp

causal distribution ¢() given in (4.3.3), Le, x is a constant =0,
{(Furthermore we see that o®{x, — &) = M{(x, — )" = Mixt) =
@, L.e., x, does nof converge in mean to {he limit x. Thus COnvergonee
in probability is the more generul concept and, therefore, of wider
applicability.)

In partieular, let us in (6) put x, = r/v = f, wheve r it the absglute
and f the relative frequency among » independent, ob:servzu;lo}r} of g
certain event which hag the probability ¢ of DCEUTring J.I:l..}.b single
observation. Asshown in §3.7, r is binomially digtributéd, and from
(6.4.14) and (6.4.15) we sce that (6) gives for an :Ll‘[)%i;:ﬁ‘l'}-’, but fixed,

e >0 AN
PUf 62 =0, ie, fosp, (13)
yt o R

N
which iz called Bernoulli's theorem : O

The relative frequency J among » inda?}éﬁdent observations of an event
tonverges in probabilily to its probabilijg}ﬁ for v-— o i.e., the probability
of f devialing more than ¢ from 8 becay;i-’gﬂq d-rbz'!rarily small when v inereases
ndefinitely. N\

N
WY

Next, by putting in (f’;}\ for X, R =1 {x; + + -+ 4+ x,), where
4

X1, t -, x, are » ipde;;{e\ndent observations of a random variable *
with finite mean g #n dispersion o, (6.4.8) and (6.4.9) zhow that
from (6) we have foban arbitrary, hut fixed, ¢ > 0

N
HPE~ w200, e, 5, (14)
 $ vy o in g

which is@éd the law of large numbers,!
.Th:a average, X, of v independent observations of @ random variable %
Wit Bnile u and o converges in probability 1o u for v — = ; d.e., the proba-

s@ Wy of X deviating more than € from u becomes arbitrartly small when v
tncreases indefinitel

Example 2. We stress that in order to compare Bernoulli's
theorem, or the law of large numbers, with experience, it is f, or %
which is the random variable; ie., we have to think of the whole scries
of » observations as being only one observation of fs or of %, although a
’_“dﬂ."ﬂﬁ‘-nsional one. As discussed in Chapter 1 we then have to con-
sider a large number, n, of such “single” observations of - or & e,

t Bec footnote 1, p. 6.
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¢ach of the n observations consists itself of » obscrvations which give,
however, only one numerical value f of f, or & of & The relative
number n'/n of these n f-values, or Z-values, for which [f — 6] = ¢,
or |& — u| Z ¢ will then be expected to lie nearer to the theoretical
value, the probability, the larger the value of # for fized value of ».
{That iz, if » itself is very large, the theoretical value is practically 0 as
given in (13), or (J4).) In order not to confuse the meanings of »
and » we have denoted these two quantities by different letters.

Tt is important to know that for the law of large numbers it is e €xt-
tial that u exists in the strict sense, le., that the defining gam or
integral is absolutely convergent, as shown by the following@%a:ﬂm’ple.

Example 3. Let x4, - - -, & have Cauchy’s distributlbn with the
samc parameters g and « (cf. (4 4.9)), in which case t-]%ejir\Ltegral for the
mean is nof absolutely convergent (cf. Example 9, §83) As shown in

problem 41, or in Example 2, §7.5, x: + - - XN3¥%, then also has
Cauchy’s distribution, but with the parametpsdw and ve. Ior £ =
1/v-{(x; + - -+ + x,) it then rcadily folléys that £ has Cauchy’s
distribution with the same parameterspagveach of the x1, * * +,
themselves, viz., x and o (check). CgusCquently
N :.‘N = dt
Pls -z g <2 —H (15)
) o #+el +(_If—- #)
p 2
H\\ o

is independent of », add\tKus & does not converge in probability to s.

It might ulso be'ic-hbught that ¢ < = is & necessary condition fpr
the law of larRe:ﬁlimbers. However, this is not the case since the
law of large adlahbers may be proved solely under the condition thal u
exists in 3h?}é37"ict sense (Khintchine's theorem).

*Exﬂ.’ﬁ;’he 4. This may easily be shown by using characteristic
f‘m"i?iﬁ) s, TFrom the definition of x,(¢) it follows that, if u exists, then,

/ oft
fo}g—:, 0, x-(0) = 1 + pit + oft), where T) —— 0. From (6.2.8) we

{0
then have for any fixed ¢

w0~ (o) - (emteo) e o

which is just the characteristic function of e(t — ) (cf. (5'2’16.))'
From the convergenee theorem stated in §5.2, p. 62, together with
Excrcise 3 it follows that £ — g QED.

inp
ey o8
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§8.2. The normal distribution hag the Important property of being
the limit of many other distributions for certain Intit processes (cf,
§§7.8, 7.9, 7.10, and 10.10). Here we shull only show this in one
special, but important cage, viz., that of the binomial distribution (ef.
Example 2, §4.3). For large values of » it may be shown that

1 (?— v__f}‘J2 J E,

» . . '
o= )1 — o = = exX] {— 5 = —
' (?,) V 281 — 8) . 2e(] — 8) v
(1
& )
where R, is numerically smaller than a certain number whighNis inde-
pendent of ».  This is sometimes ealled Laplace’s form ula although
it was actually deduced by Bernoulli. Tt holds under Qt.}ge‘afssumption
that o{x} = V381 — 8) > 1 and for such values of, i\ﬁlﬁt the normal-
ized variable (v
i — »f \/

LA 2
V38(1 — 8) ) @

is bounded. From (1) it follows that, tiiy I:;i'obability of Iy =1 2y,
whore Iy and 1, are independent of v, I8, :

l:

e

Plh<l<l,) = 1 Y 12 R,
BV DA k) B

in which the summations Have to be extended over those values of i
for which 1, =1 < by (Th number of such 7-values is in any case
smaller than (I, — LIVl — 8y + 1 {the sceond term is due to the
possibility that bothvend pointg {; and 1, may correspond to integer
values of 1), Fhas ZR,/v—— 0. In the fipst term on the right-

= o

hand side Qﬂ;(.% we have a sum of values of the function exp [—1%/2]
for Whlcg\fro'm (2) the distance betweern two consecutive [-values is
1/ ;:Q@ = f). From the definition of the definite integral we thus
bave)”
O

P— o

l iz
Pl 15 1)—s —_/ /2 gy @)
? \/?r iy ¢ ’

which is called de Moivre’s theorem. ‘Thercfore, for large values

of #, I and, consequently, « and f = x/y are approximately normally
distributed.

Exercise 1. Show that Bernoulli’s theorem (8.1.13) is contained in this result.

_ *anmp]e. Laplace’s formuly, may be proved by means of St-i?-
ling’s formulg, (ef. Appendix 1). Inserting this formmula for »!, 7%
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and {» — ¢}! on the left-hand side of (1) we find, after some caleulation,

v - ——
V2mt(L — 8) \ y—i 3 T A -

\ 2wr8(1 — 9)6"_ g\)\

where infroducing { from (2), 2 is given by
1 ) 1 v — 1
iV (E PR P L
(3 + 2) In (Vﬂ) + (y v 2) " (V(l — 3)) \:\

7

”\\

(pa+zm+ ) ('x\*"\/%(%)+

NS
o

SRS \ \ {6
(,(1 — 8 — 1Vl - 6);:%"5) In (1 . T/"ﬁ) -

Fa

\\ 1 ﬂl 2 3

O —|l= = -—] &)
\\ ) 12\» ) v — 1
O 11— 8)
{check). For suﬂiﬂently large values of » both ————= a
J V(1 — 6)
“\*\

7]

‘_\/?—6:—“ wre numerically smaller than 34, ! lying between the

hm}.‘@ Aand I, which are independent of y. In that case we have

o S

~"\
\.l

fl&‘{ Taylor's formula In (1 + &) =z — 7 + 6®, 6] < 1. Intro-

ducing this into (6) we find after some calculatmn

_32+:f @

where 7, is a number which depends on », 6, and [ but is numerically
smaller than s certain number which is independent of » and I From
(7) we readily obtain (1).
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*Exercige 2, Show by means of partial integration thal we have the following
exact expressions:

- Py . v! arl
ot —eyr—ie——2 et ey
A AR = Dlls — 1 Jo 0 0T

(r=12 .-, (8
T
5 ()= s [0 e
et — g = — (1 — g )
o i ri(p —r — 1! # . \\
(r=0,1,- - AN (9

\J
The integrals occurring on the right-hand sides arc ealled in{‘.nnﬁ}}g.‘lfB—funct-ions
and have been tabulated.t A 3
¢ F 4

*§8.3. The result (8.2.4) is only a special CLIS(%UT}\(L much more gen-
eral limit theorem. In §7.5 we have scen I'.h;lt‘the sum of » Inde-
pendent, normally distributed, random yeﬁxl\"zi’l:nlos = also normally
distributed. Howcver, if only » is suffigienily large the sum will in
general be approximatoly normally d@@ﬁf}ui@d even though the #'s
are not. This is called the centraldimit theorem:

Let x1y a2, * - - be a serjes Ufjlld:éf)endenf; random varinbles having

arbitrary distributions for whieh the means, g1, ps, © ¢ -, and the
dispersions o1, 03, * - - ,allogxisf-. We form the new random variables
¥

z x; and normalize "s‘l\xé\;)r’:by putting

i=1
:’1\‘; Z Ty — Z M
{\;{.\y” ==Ll g (1)
} 'l
,\\~' N0
R\ A
:..(:'.' \
e Miy.f =0, ey} =1,

' 4
(check). TUnder very general conditions we then have that

(1) — W (1), @)
in which ¥(#) is the normalized, normal distribution function. Thus
for ]arge values of 7, ¥, and, consequenﬂy, also a7 + - - - + % 2},1‘?
apprommately normally distributed. Asg g sufficient condition for (2]
We may mention the following: (2) holds true if there exist two numbers

' K. Pearson, T'ables of the I'ncomplete B-function, Londan, 1934,
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m and M such that
o = Mi(e; — p}’} >m >0 and Wifa; — pl?) < M,

forallé=1,2, -+, (3)
We see that (3) implies that

v

D rit—— =, )
i=1 e
: . _ O
which may be said to express that no gingle #; is dominating, N

Tf (4) is not zatisfied, and, therefore, (3) is not satisfied, it isqedes-
sary if (2) is to hold that all the x,°s be normally dist-ributgdtﬁwhich
implies &,,,(f) = ¥(f) for all »). N

Obviously (3} is satisfied if &1, 2z, -+ + all have 0119*'{1%1 the same
distribution: Thus, since in the binomial dist-rik)uj;iorlf\*»ve may write
x o= z x;, where x; all have the same dist-t:ib}ﬁiibn {cf, Example 1,

i=1 \ N
§6.4), de Mojvre's theorem (8.2.4) is c-({ﬁ\tfzbihed in the central limi
theorem. This theorem holds for even weaker condilions than (3),
but we shall here give neither the ,e;g:ﬁ:(:i conditions nor the proofs.?
The theorem also holds for Leajzgm clasges of dependent random
variables, 2 '.\\ -

Example 1. For the c@é}that x1, X, ¢+ * all have one and the
same distribution the redult “(2) may casily be proved by mcans of the
characteristic funct-io,ﬁ:i; Let the distribution function of the normal-

. e —N&/
ized variable x’_xY& = z; be ¥, ¢ = 1,2, - - + and the gorrespond-
T3

ing charaetﬁﬁb{fﬁ: function be x(#). From the definition of x(¢) and the
fact t.hat»:'£1\= 0 ando = 1 for () we have for {0 x(6) =1 —
%gz%oag,) e (@ 0. Thus X(" t__) =1- ﬁ +o (1-) How-

\/3 ’ I 2 e Vv 2 ’

: o ¥ st s
ever, from (6.2.8), the characteristic function of y, = T———v

13 then

- () -G Oz o

1 See’ eg., Cra.mér, M athematical Methods Ofggagfsﬁics; Cramérf R?ndom Variables
Chapter VI, or Khintchine, Asymplotische Gesefze der Wahrscheinlichkettsrechnung,
*Bee especially, Lévy, Théorie de Paddition des variables aléatoires.
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which is just the characteristic function of ¥(f) (cf. (5.2.21)). From
the convergence theorem stated in §5.2, p. 62, (2) follows at onee,
Q.E.D.

Example 2. It is of interest to observe that one may construet
an example showing that, if (4} is not fulfilied, (2) need not be true.
Let us consider a random variable x which hus Laplace’s distribution
(4.4.10) with the parameters 4 = 0 and « = 1, ie., from [ixercise 2,

§6.1, M{x} = x = 0 and from (5.3.15) o} = V2a = V2. Next

21 21 91 .,
we put x; = — - «, Xy = —=x, X3 =—~x, . Thus E>i=0
7l T3 x5 ey
y I - i’:}:xfl
8 1 8 1 ~\ ¢ B
SENS U N o
an ZIO' 7 . 1(21'—— [SE A 71'22 (2 _<[ ﬂ_gf( )
' Iy =1 v

27%) = 1, where {(2) iz the zeta function of Ribmiann.! Thus (4} is

- i , N - Y.
not satisfied. To work out }er; T (0 = By = h_.ni Vo ¥y = -21%

N S
My} =0 and o{y} = 1, we use theg};&'operties of the characteristic
functions. From (6.2.23) x.(¢) = LAT &%), Therefore, from Kxer-
cise 2, §6.2, and the convergence,theorem of Example 2, §5.2, we have

%) = Hm g, (@) - -

' ".::‘ @ 1 1
X0 = H*————"H(g z ) plewie
¢\J iml i ra—
«\™ % — 1
P 2

O -
¢ t+e

<
From (6.2.14)we then obtain

o Sog

£
N/ ™ . 2
‘Pﬂ(u) W’Q[ g v 5 = di = 1 . =
RN S e+ ¢ exp [Vomu] + exp [— Lonu]
AN

~\\V 1

) . (6)
Y 2 cosh (lgmu)
where the integral may be worked out by means of complex integra-
tiom around & rectangle of height # and indefinitely great breadth, one
0? whose sides is the real t-axis, Obviously (6) differs from the normal
distribution,

8.4 In §8.2 we considered the limit of the binomial distribution

for »— « and § neld constant. We shall now consider the limit if
*For this
Modern Angy

and the {following calculations, see, e.g., Whittaker and Watson,
ysis, Cambridge, 1935,
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instead of # we keep M {x} = u = »8 constant for » — o, i.e., §—— 0.

r—+ @

We then obtain from (4.3.4) introducing u instead of  in ¢;

lim ¢; = lim (V) (E) (1 — E) =

P 1—s = 1. ¥ ¥

=) (- ()
3'&—*36 ¥ ¥ ¥ 4

. € “’:.\\1)

]

( 3

since lim (L 4+ 2)* = e. Thus we find that for s kept, Qon*{tant the
—0

binomial distribution converges when » — o« to Pmss@ﬁ% dlstnbutlon
Ifboth > dand v > p = v, ie,, § K 1, we ﬁndfro?: (1) the formula
corresponding to (8.2.1) >
) \/
v ;_wet \Iﬁ‘\ 2
. i —_ 1t — = 8
o: (%)9 (-0 =Ty e @
in which R, is again numerically smaf{;ler than a certain number which
is mdep( ndent of ». Equatlon‘ (2}‘ is ealled Poiszon’s formula or,
owing to the condition 8 < I the law of smali numbers, We have
proviously discusscd exa ﬁvs of random variables which have
Poisson’s distribution, (c\f\” xamples 4 and 5, §4.3).

Example. If u is ;}Hy large we must expect Poisson’s formuls to
£0 over into that Uf  Laplace with #f = o and 6 = 0, viz,,

x:\’.; B R,
NY ¢ = 1 exp [— (L-Zu—p)—] -+ — (3)

“hlch\may also be verified directly from (2) by means of Stirling’s

{fiigufa



9.

THE RELATION OF THE THEORY OF
PROBABILITY TO EXPERIENCE

AND ITS PRACTICAL IMPORTANCE L

2
€ W3

$9.1. We have now finished our discussion of they i thematical
theory, and before we proceed to diseuss some of iLa'\}fiﬁp]icat-ions we
shall shortly discuss the two questions: (N Hm}"\’mn the theory be
tested by experience? (IT) Where is probabilityapplied and of what
use is it? \
\Y
1. THE RELATION TO ’I‘ﬂX}'ERIENCE

§9.2. All the thoorems deduced 50 fa\xf‘h::we heen of a purely mathe-
matical nature and do net, of course,}p?bve anything ahout what really
happens in nature, just as, e.g,, i:ra."ij'i‘echa,nics we cannot prove that the
planets will actually follow th&;’iﬁiths caleulated.  What can be proved
mathematically are only statements regarding our model of nature,
never stalements rugardir@ nature itself. ‘Thug Bernoulli’s theorem
does not prove that the buipirical relative frequency will be very nearly
equal to its theoretical value, the probability, but only that this is
highly probable. o ‘However, in the coursc of time we have eollected
a large body of Biipirical material, which shows what no mathematieal
argument 5@q§e‘irer prove that, if an event hag a negligibly small proba-
bility Of\ckncilrring, We can assumc with a certainty sufficiently high
for all\praciical burposes that the event will not oceur in a single
observation,

é;i}‘herefore, by any comparison hetween theory and experience we
all as & main criterion for agreement demand;

- -A- If an event has a negligibly small probability of occur-
rng, it should not, “practically speaking,” occur in a single
obzervation.
~ When we do not demand that the event shall never oceur at all i
is because even the most improbable event may occur. Thus, e.g.
if we should prepare the annual statement of a large bank we may, of
course, try to take a shorteut and guess all the numbers, and, in prin-
ciple, it is possible that all the numbers will come out correctly—bub

112
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ne human being will deny that this event is go unlikely to oecur that
we may safely neglect its occurrence for all practical purposes (cf.
problem 4).

Example 1. In applying the criterion A we must be somewhat
careful in those cases in which we have only a finite number of equally
probable possibilities. TFor cxample, since all combinations in a bridge
play are equally probable, we might expect that such a eombination
wherein at least one player gets 13 cards of the same color is just as
possible ag any other combination, in spite of the fact that the pre b@-
bility of the firgt event is only 1/(4 X 10'%) (ef. problem 8). Nevyerthe-
less, when we are surprised each time such apparently rarc e&*}'ente’ do
oceur, the reason is that unconsciously we put the prgb’lem’ differ-
ently. If inzlead of considering a usual deck of cards wa&f@ﬂ‘numbcred
the 52 cards in a random manner from 1 to 32, thgs'\i'esult discussed
would have corresponded to a certain number of ‘permutations of the
numbers from 1 to 52, no one of which we would have found especially
conspicuous. Thus it is quite arbilrary whieh}ﬁent we make promi-
nent, for unconsciously we put the prob‘lelﬁ’;l in such a way that we
compure only the Lwo possibilities: either’(3 cards of the same color
or not 13 cards of the same color. HQwever, in that case it is obvious
that, the probability of the fornw;'.’.event is negligible as compared to
that of the latler. ) \\

Secondly we stress thatm?&\c-annot demand that the event must not
occur in a series of obgérvations. For example, if an event has the
probability 1/x, whafen is a very large number, the probability of the
avent occurring af {8ast onec among » observations is

p o n
a0 - (1 - 1) ~1— ¢t =063
' \,\\“ e
(“’h}“'ﬁ),fgiﬂcl thig prebability is by no means negligible. In fact the
evenfioceurs in the mean just once for every n observations (\_1-'hy?).
8913, Tt must be noted that strictly speaking the main ecriterion for
agrecment, A, eannot be verified directly. For, if an event has a
negligibly small probability and if it docs not occur in a single observa-
tion, the theory apparently agrees with experience. DBut 1f. the eVB]’_}t-
does occur, nevertheless, is the theory then in agreemcnt with experi-
ence or not? However, it follows from the very nature of the Pr_Ob“
lem that a single observation can never prove, of disprove, a statistical
theory. Proof, or disproof, is possible only by performing scveral
observations, as in the following criteria, I-VI which are deduced
from the main criterion A and the mathematically proved theorems of
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probability, espeeially those connected with the vineept of consergery
) , SN

in probability (§8.1), o N |
memm Bernoulli's theorem (8.1.13) the volu ve- frogueney (?f & event
conrverges in probability 1o ilx probabibity . Ui Trom this theo?'em
and A we must demand as the next eriterion for sereement hetwean
theory and experience thut:

L Byery event should oceur in o serfes of u!m-.-‘f-:lm'ms..s- & -r}z;mherkif
times which is praciically spealing proportiond to the ?thﬂ{‘w :}ir,e
lated for thai event f the number of ohsercations in ”"",’“.‘;?M_, alsr clfﬁ.;

In other words, the oheerved relitive freneny ,H-[ui:jd“‘}gt\e;}e o
to the caleulated probability.  Thus [ is, of voirse .:.d “l}npoi :m o
if the probability of the event hus bren :l:-dmwi..}l'c‘m‘l ot 1;1;; o
bilities; otherwise, T is simply equivalent 1})(" finition o

e S

cept of probability (ef. §1.4). N o
If for a random variable we have dedWW¥ o certain distribu

function we must next demand thut: N\

IL A large number of observed 1'(1?3;{',;‘?1_{ (0 rundon r'am'able should be
distributed according to its theoretir{[’zi Wistribid fun fw_f‘f on. wed in

How such 5 comparison is performed in praviice is discuss
statistics (of. §10.4-§ 10.8), N7

From A and (8.1.6) we must demand that-

B . ailyred g8 fo {
O1. A function of n cbservations, the dispersion of which go
for indefindicly inor

e@ing values of n, should practically speaking b

equal fo it mean, valup for large values of n. veragt
In Particulgr, %gj ce, from the law of large numbers, the a

Br bability to the mean, we must demnand that-t‘ of &

Iv. 7 D\Hérage of o large number of independent obscmaﬂwi’%‘zm‘

randommariohie should practically speaking be cqual to the mean teli.

‘ 'tude of
%&‘the mean value indicates the average order of magm
thessandom variable in question,

3 . and
u"}rom A and Tschebyschefy's inequality (8.1.4) we must dem

. emethe
Ve An obserueq yopy of @ random varighle should }'”’a'dwa'ziy:i'mes
g ot deviate from ghe meon value by more than a smoll numbe
the dispersion,

e 16
. Tbution of a number of relativ
quencies shout the

a7s st there-
Probability, From (8.2.4) and A we must
fore demang that: ey
VI For g lerge nampey of series of obseryations, each Conm-w;iﬂ
large number of observations, ghe relative frequencies of a certoin
should be normally distributed about

the vrobability of the event.
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Finally we stress that we can never ask whether or not the theoretical
results agree with the empirieal data but only whether they agree
autficiently well (¢f. § 1.1).  Next it follows from the very nature of the
problem that i is impossible to give general rules for judging such
questions, since this is a subjeclive question which can be settled only
by each person and for each problem separately. However, with
respect to this Tact, probability does not dilfer from all other applica-
tiong of mathematies Lo the deseription of the phenomens of the real

~

world, e.g., geomelry, astronomy, and theoretical physics. R\

IT. THE PRACTICAL IMPORTANCE OF l’ROBABI.IJf’i[‘i’x

§9-4. As already diseussed in Chapter 1 probability s applied
whenever phenomena sre deseribed and analyzed by me}mé' of a sta-
tistieal deseription.  But after all what is the use of.this?

First, probability is uscd in statisties for purely™escriptive pur-
Poses, expressing statistical material in a short\gdnd concise way (cf.
§10.1). We huve important applications of &fatislies, e.g., in eco-
nomics and pepulation stalisties ag erh‘ ak in the theory of errors
and of adjustment (¢f. Chapters 11 and2).

§9.5. Second, probability ix u.’;:ejd.:ih statisties for purposes of
analysis, Ton a multitude of c}ggei:iinent-a.l investigations we try to
analyze certain phenomens by comparing observations obtained under
different conditions. The wiajh principle in any such analysis is to
keep as far ag possible a 1{factors constant except one which is varied
i order o find the influente thal it has on the phenomenon considered.
However, it ia ncccss&ij? 40 treal the phenomena considered by means
of stafistical -';}wthgfczs /a5 soon as they are random, showing statistical
Fuctuations ( § 1), 1.e., that a repetition of the experiment apl’fll'em-ly
under emf’d{ﬁm same conditions may lead to more or less different
results. Phis, if, e.g., in ordnance the chemical composition of the
powdgr\igféhanged and we want to find out whether we can shoo.t over
& Rﬁg’m" distance with the new powder, it iz, owing to the statistical
flue ué.t.ions, not encugh to fire a singlc shot with the old and one with
the new powder. To get o measure of the statistical ﬂuctu&tlfms and
thus decide whether the new compuosition has the result desired we
must perform a whole series of shots with the old powder and one
Series with the new. The problem then js: Is the difference measured
significant, or is it only what must be cxpected because of the sta-
tistical fluctuations (cf. §11.15)7 ) )

Such staiistical analyses play an ever-increasing role i ]
Stience,! Thus, when in medicine we want b0 COMPpare Various

n modern

*A number of such examples may be found in Fisher, Statistical Methods for

Research Workers, especially Chapter V.
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sleeping tablets we must try their effects on a number of patients, and
the problem is: Is there any significant difference in their effect
beyond that which can be expected from the statlistical {lactuations?
Or in agricultural seience we may want to compare various ferti-
lizers. We then divide & number of fields in several partz and treat
each part with one fertilizer. Again the problem is: Is there any
significant difference in their effect beyond that swhich can be expeeted
from the statistical fluctuations? Or in the world of business if we
want to find out which form for advertising is most effective, “a try
the various forms of adverlizing on different groups of peopl‘e, and
the problem iz again: Is there any significant difference bQVQn,d that
from the statistical fluctuations? And so forth. O

Ancther form of statistical analysis ig found in prt;nb]ems of {a)
correlation and (b) regression. The liestion her(ys to investigate
(z) whether or not certain phenomena dependsgneach other or are
correlated, and (b), if so, what the dependepey is (cf. §11.18 and
§12.15)." Such problems are met in grncnb:a' e.g., by investigating
whether parents of high intelligence R ¥specially likely to have
children who are ulso of high intelligembey or in agricultural science
by Investigating the connection Lu,h\(‘(,n rainfall and vield; or in
ordnance by mVeSLw‘atmg whet.hel‘ there is any connection b(‘t“ een
deviation of a shot in height. @nd in azimuth (ef. Example, §11.18);
and so forih. »

A third form of stausﬁcal analysis is found in techmnology by
investigating whethe;"Qt’a'ndardlzed products fulfill certain conditions.”
Thus, e.g., if a manufa('turer wants to make sure that the lifetime of his
bulbs is above gocertain limit he cannot, of course, examine the life-
time of each b:ulB produced. Instead he takes samples from the w hole
production., aﬁd on the basis of results from tests of such samples he
e&timateé(tl‘le risk of giving a guarantee for the whole production
Tt is obwlous that such an analysis may have the greatest economie
1mportance

“W9.6. Third, probability is used for predieting the future course
of random phenomena. The oldest application of probability for
that purpose is to games of chunee. Another and, in practice
extremely important application is that of insurance, in which we
want to predict, on the basis of statistical observations regarding
death, sickness, fire, theft, and so forth, the number of such events
which will oecur in the course of a given future time, A third applica-

! A number of such examples may be found in Fisher, Statistical Methods for
Reseqrch Workers, espocially Chapters Vand VL

2L, e.g., Fry, Probubility and Jis Fngineering Uses.
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tion of this kind is found in various branches of theoretical physics,’
where we want to prediet the course of experiments concerned with
the kinetic theory of gases (c¢f. the example, §4.8; Iixercise 3, §7.4;
§4.16), radicactive decay (cf. the example, §3.7; Examples 1 §3.8,
5 §4.3, 2 §4.4) or other phenomens in atomic theory (ef. §4.15,
§4.17, Example 6, §5.1), and =0 forth. Also in technology, prob-
ability is used for purposes of prediction, e.g., in telephony for designing
switchboards when we may ask how many operators a central with
given numhber of subscribers must have in order that the mean waiting
time Hes below a cerfain limit {ef. Examplos 4 §4.3; 2 §4.4),2 ;uﬁ\so
forth. In ordnance, probability is used for caleulating thate fzagtion
of the total number of shots which we should observe in ffont of the
target when the gun is adjusted for maximal number ofihits, or for
estimating when a shot ought be considered as a sﬁné,}t\(cf. §11.17),2
and #o forth. In business, probability may be ,us}a’ for cstimating
how large stocks of a certain commodity a store should have, how
many clerks it should have in its various depattments (cf. Example 5,
§4.3), and so forth. \\ v

§9.7. As the above discussion has ghown, the application of sta-
tistical methods and considerationsyls & natural procedure in many
problems. Thus the role of Lthe s’ta.%’isti cal description is no exceptional
one; on the eontrary, it contaims the causal description as a special
limiting case, sinee the la;ttei"description simply means that each
observation gives the saﬁ&é resuli (ef. p. 3). Because in practice
the latler hardly ever,ég\ctirs in any actual measurements, the statis-
tical deseription as #rule represents a less idealized description of real
phenomena than {hé“causal description does.

Furthermore(the purpose of all science is, first, to state the phe-
nomena in a-pltely descriptive way; second, by analysis and by experi-
menis to%ﬂeﬁt apparently scattered and unconnected facts fror'n
commom points of view, i.e., to put them into order and find their
’feyj‘iﬂa%'z'iz’es and laws, to catelogue them, so to speak; t-hil'd:. to account
dquahiitatively for the phenomena observed by eomstructing theories,
Le] to lay down rules for ealenlating in advance quantities which roay
be compared with observed quantities; and, fourth, to lead to the dis-
covery of new facts and reqularities. As illustrated above, s-ba-t-lspca-]
considerations play a large and ever-increasing role in the pursuit of
ach of these purposes.

' Bee, e.g., Firth, Theoretdsche Physik.

% Bee, o.g., Fry, Probability and Its Engineering {7ses,
O, e, Hayes, Elements of Ordnance.



10.

APPLICATION OF THE THEORY OF
PROBABILITY TO STATISTICS

~

W

§10.1. The purpose of statistics has been formulntad most clearly

by the English statistician R, A. Fisher:! 09

Statistics may be characterized briefly as the science of Sethiction and
analysis of observational materials, As a rule, sj‘ﬁ?’éj,ic:ml malerial
which consists of a certuin number of obscrvatic V&g, way v, I
of a random variable x (ef. §4.1) when given indl83 raw form ” in which
the n numbers are given in the order in which Hiey have been observed
i difficult both to survey and to reproduégdy” Thus it is not suitable
for giving us any information aboutN{he variable, x, nvestigated.
It is the purpose of statistics to rcpfacé the observed material by a
relatively few numerical quantitic®¥representing the whole material
or, in other words, containing a,é;much as possible of the information
regurding x as we are looking$or,

In statistical material n'f\e can seldom inelude all the observations
which might theoretiq&ﬂ)}\be performed.  Conzequently we must, 88
& rule, regard the 'gﬁ"gﬁ statistical material as u random sample
which is in itself ghbjeet to statistical fluetuations because we would
obtain other valis, ©,/, 2o/, - - -

! y @2, if we performed n new observa-
tlons.

Thusydds, even in the stmplest cases, natural {v use the concept
of prob D@y by introducing certain idealized values, the probabililies,
for the predelive frequencies of the various possible resulis of observation
({185 Yee., for the description of the random variohle x considered 1
g\s‘sgh'ia!fe with & o certain distribution function ®,(1) (§4.2).
\JAsmentioned in §2.7 it may be a convenient and shorthand expression
for this same fact to #ay that the sample observed has been taken at
ranldom from a hypothetical infinite class, the theoretical population.
This lform of language is much used in statistics, although strictly
speaking it can be made precise only in the very abstract formulation
of probability given by Kolmogoroff (cf. §2.?).v
We note that, as g rule, we are not intercsted in the actual empiricsl
numbers, 1, - - | Tny themselves, but in the theoretical coneept,
* Fisher, Statistical Methods Jor Research Workers,
113
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®,(1), the model by means of which we describe our observations (cf.
§1.1). Just as, ¢.g., in physics by investigating, say, the law of free
fall, s = lggt®, we are not interested in the actually measured (s, {)-
values, which, owing to the unaveidable measuring errors, will be
seattered more or less about this theoretieal curve. What we look
for here iz how to deduce from our obgervations a numerical value of
the parameter g, its *“true’ value, and, of course, to check whether
this theoretical law gives a satisfactory deseription of our obscrvational,
material, A\

$10.2. The theoretical distribution function, ®,(¢), will, as a(riﬂg:,
contain one or a few constants or paramelers such as » and ¢ the
normal distzibution. By stating the numerical values of these param-
eters the random variable we investigate is completely ¢haratterized,
or, in other words, our whole observational materigl isyepresented by
the values of the parameters. Now on the basis ofetir obscrvations,
Ty, + -, @y, our task is to estimate, or fopmestimales of, the
numerical values of the parameters in $,(i)\ “These empirical esti-
mates of the theoretical paramelers are, of*gpuarse, themselves random
variables, being subject to statistical fugtuations. In order to obtain
a measure for the expected magnitpdé: of these fluctuations and thus
for the certuinty with which we g:a.};( Tely on the values for the param-
eters found from the obscrvﬂioris‘, we must next deduce from $.(t)
the distribution [unetions e’f\}ur estimates. Having done that we
have solved our problem\'@rr(:l have reduced the given obsgervational
material as far as possikle.

Thus, after the in¥@stigation has been planned every statistical prob-
lem dernands that :,ve'ans\\fer the following four questions:

1. The gues,tﬁin: which distribution funciion io associale with the
random vorialle under consideralion.

IE. Tha l}hesa.’.ifm + in what way we con tnvestigate how well the distribu-
tion f gé'z?faﬁén- chosen fils the observations.

K{ Whe question: how fo caleulate Jfrom the given sample, t.6., the
g-‘.iz:m observational valucs B, 7Tt T the best pOSS'ﬂ-bEG estimales Of
the unknown parameters in the distribution function,

IV. The question: to deduce from Bo() the distribiutions of these esli-
mates and thus to construct methods of testing their unceriainlies.

§10.3. Thus, hefore we can solve a grven statistical problem we must
first got up & hypothesis regarding the mathematical form of the dis-
tribulion function. Sometimes we know from previous experience
that & certain [orm may be used, e.g., the normal (7.1.1).  Or we may
deduce from certain simplifying assuraptions ahout the phenomena
considered the distribution function by means of the rules of probu-
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bility. As a rule, this is the caze in theoretical physies orin the theory
of games of chance, as we have seen in many cxamples in Chapters
1-9.

Examplel. Thisisalso the ease in the theory of errors (cl. §11.4),
where we may assume that a great number of independent causes of
errors are at work so that the error obzerved is the sum of all these
“elementary errors,”’ as they are called. Trom the central limit
theorem (ef. §8.3) it follows that the error ohserved is to 1 high @grec
of approximation normally distributed. A N\

Example 2. By a gencralization of the “scheme of €letacntary
errors”’ of the previous example Kapteyn! has deduced otvhole class
of distributions from the normal. Let us assume % our random
variable x is not directly a sum of a large number of gariables but that
its value is due to a large number of causes, Hivihg siccessively an
“Impulse,” the effect of which depends partly'gn'the magnitude of the
impulse and partly on the magnitude gl to x by the previous
impulses. Lot =y, 25, - - - ; %, be thedudependent impulses from »
causes, and let x; be the result of the oﬁec t'f the first ¢ of these impulaes.
Next we assume that #:¢1 dependgwonly on the value of ayy but not on
the past history, viz., the spegifie way in which the value of #; i
reached. In other words, weassume that there exists a funetion ¢(z)
such that o~

Fitt 2\*"‘\;:\\‘[‘ i1 {%:), glz) = 0.

Now, if » is large ﬂnd,\therefore, cach contribution is small, we have

o s »—1
N Xipl — Xy ¥ odx
I TR & I R ZJL_. ‘w/ = = G(x). 1)
~O ~ o) = g(z)
Under,‘@:’geneml conditions z, 4+ - . - + =, will be approsimately

DOTIR ;':L:lly distributed for large v, by the central limit theorcm (§8.3).
Lhus in this case we have that not %, itsclf, but a certain function,
.(',C)’ given in (1) s normally distributed: Kapteyn's clags of distribu-
tions which we have already considered in (7_7_1'):

d®, () = Jdv (CLT@J_‘_H) S [_ @@2 - #)2] d%f_)"' p
MG} =4, (G =0 @)

In many SO(‘JiOlOgiCal and biological problems Kapteyn’s scheme may
be applied, if we put 9(x} = x, Le, if we assume that the effect of 2
! Kepteyn and van Uven, Skew Frequency Curves,
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given cause is proportional to the magnitude already reached. Since

e n x, we find the distribution, called the legarithmico-

T
normal :
Int -~ ,u) 1 [ (In ¢ ~ pﬂ dt
=4l D = — — e
dP,(f} = d ( N Nz exp 252 /
(3)
0=t <w)y
aMfln x} = g, elln x} = 0. N\

For example, this formula gives a satisfactory deseription of t}':ﬁe“' dis-
tribution of the weight of school children, of income within’certain

L 3
7 %G

voeations; and so forth, {4

In general we cannol deduce the distribution funefion theoretically
but must try to obtain it directly from the obgervaltions, Now, since
we can always perform only a finite number of\observaiions, a multi-
tude of theorctical formulae may be fitted(t6/a given observational
materizl, no one of which is either ”t-ruej’.’\qf! “false™ (cf. §1.1). But
they may fit the observations more or Yess satisfactorily, and those
giving only a poor fit may be exclu@sﬁdﬂl’ﬁr various tests (of. §10.4). In
general, we must choose a maLhepﬁaféi‘CaI form for &,(t) which we either
know analvtically or which Bas been numerically tabulated.! In
madern statisties, Kaptcy'r(& ¥lass of distributions, given in (2), is
used more snd more freguently because in this case the distribution
of the eslimates nla.}ql'_)é obtained. Also, however, some of the older
classes of distributiensre still in uze: for example, the class of Pearson
obtained ay sol‘utiﬁhé of the differential equation

9.\
\O” do(ty _ (= aje® (4)
QO dt Bo + Bit + Bat®

wherg~g} 8, 8, and 8, are four paramcters; or the class of Gram-
NN . . . + . 3 4
C%ﬂ:ler which consists of series expansions after the normal distri-

. ¢ — .

bution, ( p), and its derivatives.!
[0

§10.4. We now assume that question I has been answered, a hypoth-

esis regurding $,(f) having been laid down. Next we have to apswer
question TI, i.e., to work out methods to test how well the theoretical
distribution fits the observations. The simplest test consists . of
Plotting the observations graphicully and drawing the corresponding
theoretical eurve for corparison.

! Yor general distributions see, e.g., Kendall, The Advanced Theory of Statistics.
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Let us first treat the case of discontinuous distribulions (§4.3). We
plot the possible values, ¢;, as abscissae and was ordinutes the relative
frequencies

Ny

fo=— (1)

[

where n; is the number among the n observations in which the result
t; has been observed. This graph is suid to sive the eampirical,
observed, frequency or sample distribution.  Yor (he (’(}1114.‘}:,Q‘isun
we plot in the same graph the theoretical or true disl.rihu!‘.im} Vig.,
the probabilities ; for the resulls ¢, In spite of the facex that o s
defined only for ¢ = ¢, it may be convenient for the conrparison to
connect the theoretical pointle with a smooth curve, (¥ shown, e.g.,
in Fig. 7. Also we may plot as ordinates the alpfglite frequencies,
%4, Which, if n; are only small numbers, iz done m:ost- conveniently by
plotting above each #; a number of dots coethto the number ny, as,
e.g, shown in Fig. 1, p. 7. For comparis@ihwe plot the theoretical
values of n;, viz., »; = ng;. QN

Sinee f; iz the relative frequency amng the = indepencent observa-
tions of the event x = ¢; with prohability ¢, 7, is for ench fived value
c()f 7 a)binomia]ly distributed vaplable for which from (6.4.14) and
6.4.15 N

ML= o @
¢ " \ . 1 — ;
\ gz}fi} = dT@_) . 0. « {3}
Thus from Be@@&ﬂé’s theorem (8.1.18) f;-— o;; i.e., we must, for each
N inp

ring S/
Ti—s @8

fized 3”‘”%@”’ 4, expect the observed value of f; to lie very close tu o, for large

values o',

AN
'{‘Example. Let the random variable be the number x of radioactive
a%oins decaying in a certain interval of time. Trom kxaraple 5,
§4.3, « ha.s Poisson’s distribution. By a mcasurement of, in all,
n = 2608 time intervals (each of length 1¢ minute) the vahies givenIn
:I‘able_ L “.rero found."  Here n; denotes the number of Lime intervals
m Whl({h % atoms were found decaying and v; = ng; the corresponding
theor:etmal number, ¢; being caleulated from (4.3.5) with p = 3.87
.(Uf' Eixample 3, §10.10). 1In Fig. 7, n; and »; are plotted against 4. It
15 seen from both the table and the figure that the agreement hetween

! Bee Rutherford, Chadwi

¢k, and Kl etk : ioactie Subslances,
p. 172, London, 1930, ' 1% Radiations from Badioactive Substa



§10.4

Tarir 1

123

Number of Doecays in
{One Interval

Observed Number
of Intm'val_s

Theoretical Number

of Intervals

i ¥ig ¥ f
) 57 54 !
1 203 210 |
2 383 407

3 325 525

4 532 508 ~
5 408 394 AN\
6 273 235 A .

7 139 140 <MD

8 45 8 i:)

9 a7 28 ¢

10 10 N

i1 4 A

12 0 '\Q,} 1

13 1 \ 1

14 1 R 1

n=z ,=2@®\ v=zn=26l}8
: N 9, L
«a ¢
] O

600 —
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theory and experiment, i.e., between the theoretical and the sample
distribution, is very satisfactory (cf. Example 1, §10.8).

§10.5. Let us now consider confinuous distributions (34.4). We
perform & grouping of the observations, which means that we divide
a suitable interval which comprises all the observed values zy, 2,

", %, In & cerfain number m < n of subintervals with lengths At
called the elags intervals, all of which need not have the same lengths.
The middle peints of these intervals we denote ¢, £o, -+ -, f,. For
each #; we count the number of observations, nq, Tor which th@\r@sults
lie in the dth class interval) i.c., for which

Al Al WV
- g <wSti+ ~\ (1)
>
Next we form the corresponding relative frequcn(:}bs divided by Al
1 i MmN\
it = -2 @

Ab; ’;' ™
NN

and plot in & fu-coordinate system thg.agep-functiou

3

N Al Al o
u=f{t) =flt) v & — AL L R 3

3

This graph is called a higt]g\gram. We see that the velative number of
obscrvations lying in s Settain interval is equal to the arce between the
curve 4 = f{f) and\ihe interval on the faxis. This graph of v = f(t)
gives a convenignb-fepresentation of the observations if 7 is not 0o
gemall and thq :A\Q’s are chosen in a suitable way (ef. below). It s
said to gi}{g}h& empirical, obscrved, frequency or sample dis-
tributigus” For comparison we next plol in the same graph the cor-
requr@ing theoretical, or true, distribution, viz., the probability
density u = o(f). Also it may be conveniont 1o plot as ordinates the
gﬂ)ﬁt}lu.te frequencies n;/At; and then for comparison plet the corre-
ponding theoratieal curve u — no(t). If the class intervals are all
of equal length, Aty it may be convenicnt to omit the division by Af
and plot #; and for comparison # Afp(l).
Sometimes we plot the points (¢;, f(1.)), (ti, _\%‘) or (i, ny) and then

connect these points by straight lines, thus obtaining a smoother curve;
called the frequency polygon. However, this is less appropriate
than the histogram since by doing this we veil the fact that, in con
trast to a theoretical distribution, every empirical distribution js dis-
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continuous, it being possible to make only a finite number of observa-
tions, the results of which are all integers when expressed in the smallest
unit possible with our measuring instrument.

In analogy with (10.4.2) and (10.4.3) f{{;) is, for each fixed value of
7, & binomially distributed variable with

s e (any2)
S =ifm[«’f} ! f G dt = ot

Aty n| AL = {atef2)
Aty FETTR
i < B <t )

2 2
A
-

L[ e — el&) AL,
2 a4t = . )2 = . A&y 5
o HO = m S MO
X ‘..:\"
Thus from Bernoulli's theorem (8.1.13) f{t:) —x@l&); e, we must,
N

P

for each fized value of t;, expect the obsewe{v@hﬁe of f{i;} to lie very close
o (&) for large values of n, ¢(&;) being tﬁﬁaiferage value of ¢(t) in the
class interval Aty For small values of &, ¢(4:) is practically equal
0 @(f;), ».”’::’

If we plot ny we have to C?lf{ﬁl‘&tﬂ the corresponding theoretical
values e

..Q\\ f Ak 2)

S A W o) at ©
for each value of é@ﬂd”compare n; with »;, which is most conveniently
done in o tablefcl? example).

In order tg«é‘fe{; ag detailed a comparison as possible we see that the
clags Intepw ¥ must be chogen as small as possible. Howe\_rer, from
(5) we gae:tz\t-hat, the smaller the Af’s, the larger the statistical luctua-
1-i0,1}§:6'1§}'(£{_), which results in the histogram’s assuming a more irregular
slfapg (cf. Figs. 10 and 11). 7Thus » must be chosen in such a way that
the Af’s can be chosen small and at the same time n Af; are large
numbers,  In practice we wsually try to choosen and the Aty's so that each
class inlerval contains af least 5 observations (except possibly the extreme
class intervals)., If the At’s are too small the statistical ﬂu(‘.t-T:lati(?]lS
will dominate, and if they are too large the details of the dis’?rnbumon
will be quenched. Thus except when n is very large the histogram
should be used only for a rough representation, while the sum poly_gon
(§10.6) should be used for sll detailed comparisons with the theorstical
distribution.
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Example. By shooting 96 shots with an Smm machine gun
against a target at a distance 300 m the tabulated deviations in ag.
muth and height from the target having coordinates (0, 0} have been
measured,

TasLE 1 TavLe 2
Azimuth Deviation Height Dovintion
in Centimetors in Clentimeters )
] | AN
ti n; ry t ny 7
-30 0 0.17 —60 0 {0vad
—20 2 1.80 —50 3 Or.05
~10 9 9.73 —40 5 AN 502
0 28 25.43 —30 13 A\ 7 12.8
19, 30 32.22 —20 18 ¢ 19.04
20 21 19.83 -10. AS 22 07
30 5 5.91 0 21 17.46
40 1 0.85 100 00 9.86
50 0 0.66 20 LY 5 3.98
) o 1.42
En{=n=962vi=v=96.00Q.."_‘ )
L i 7 "':.." lne=n=962w=ﬂ=95'm
E % t 13

. FA .
He.re n; 13 the number, .Q{\shots for which the deviation in azimuth,
or height, lies in the aldsy-about ¢; with A = 10 em, and »; are given by
(6) and the normabdistribution, i.e.,

.{ g
v; = 06 N = =
b “_;{;}2) P ¥ ( . ) df =

O At At

A bty - by e

~\J 96\ ¥ _
\/: o ¢

where ¥ is tabulated in Table I and the parameters have the numerical
values p = 8.3 em and ¢ = 11.4 em for the azimuth and 4 = —12.0
em and ¢ = 17.0 om for the height (cf. example, §11.12).

. In Figs. 8 and 9 we have plotted the two histograms for the devia-
tllogs_ of azimuth and height, respectively, (We have omiited the
division with n = 98.) For comparison we have plotted the corre-

sponding theoretical curyes 96 lyﬁr (t—_—‘u) obtained from Table I
a 2
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Tic. 9. Height deviation, 4t = 10 em.

with the values of x and ¢ mentioned previously. It is seen from both
the tables and the figures that the agreement between obgervations
and theory is very satisfactory. As & matter of fact we shall see in
the next two topics that the agreement is even better than Figs. 8
and 9 show,

In Figs. 10 and 11 we have plotted the histograms of the same obszer-
vations for a class interval Af = 2 cm. The figures clearly show that
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Fig. 10.  Asimuth deviation., Af = 2 e,

by this the statistical fluctuations are increased so sirongly that ! b 1‘,
highly doubtful, from these eurves alone, whether the observations
agree with the theorotica] curves or not, . ~

§10.6. A method that may always be applicd Lo both discontinious
and continuous distributions consists in plotting the sum polygon

% =F@) = 1\_{%} )
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where N (¢] is the number of observations for which the result is smaller
than or equal to & F(t) is also called a eumulated histogram or
empirical, observed, frequency, or sample distribution func-
tion. For comparizon we plot in the same graph the corresponding
theoretieul or true distribution, viz., the distribution function

41— _
’— RN
- A O
O
I | s
JNy Y
#l52- - / ™ W
_ Y N[ I, hen
Kilgg L w(—f)
N
N
TN
: A il j
-0 0 N 0 20 40
SO ;
N/

o Elc. 11, Weight deviation. A¢ = 2 om.
X'

{"‘\ ’ k] - - -
u = B(1). Qﬁ”ﬁmy also be convenient here to omit the division by »

in (1) a}%d,\plot the corresponding theoretical curve » = n®(f). Since
4 ..\' Y

O~ MIFD] = 40 ©)
ir() - X020 3)

{check) we have from Bernowlli's theorem (8.1.13) that F(f) — ®(&);
inn

Le., we must, for each fized value of 1, expect the observed value of F(1) to
fie very close to (1) for large values of n. This method gives the most
detailed comparison between observation and theory. However, for
large values of # it is cumbersome to plof the sum polygon, but in
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such cases we may group the observations with a small clags interyal
At before calculating the sum polygon.

Example. For the deviations in azimuth and height of the 96
shots in the example, §10.5, we obtain the two sum polygons shown in
Figs 12 and 13 (the division by n having again been omitied). For
comparison we have plotied the corresponding theoretical curves, viz,

!

N
&
|

‘<\/o l | | r i | [
~20 0

20 40
14

Fa. 12, Azimuth deviation.

i~ . )
96¥ e / with the previously stated numerical values of x and o

Ttis seen that the agreement is extremely satisfactory and much better

than is shown by the previous figures, especially Figs. 10 and 11.
$10.7. For Kapteyn’s distributions, given in (10.3.2), which are

generalizations of the normal distribution, we have an especially
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simple method for comparing observations with theory. Since u =
¥(¢) is always increasing in the whole interval — = < § < = we may
give L as o function of u, t = ¥ (u).! For the general normal distribu-

é —
tlon, = = \If( ¢ , we thus have ¥ l(u) = ( — u)/e = v,(f).

T
Binee F({} ig expected to lie close to %, we shall expect the function

|

60—~

N()
5
i

20t~

.'\ ' )
\\, Fig. 13. Height deviation.

”2%\’1;;](F(ﬁ)), F(#) given in (10.6.1), to lic very close to the straight
line »y = (¢t — u)/o passing through the point (g, 0) and having the
slope 1/¢. This method, sometimes called the probit diagram
method, 1s very convenient, Since the normal distribution has been
tabulated only for the values g = 0 and ¢ = 1 it saves one a lot of
computing, (There also exists so-called probability paper for per-
forming this transformation graphically.)

If not x, bul a certain function of x, G{x), is normally distributed

we shall expect vy = T HF(£) to lic very close to the curve vy =

1 This funetion is tabulated in Fisher and Yates, Siutistical T'ables, Table IX.
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Fre. 14, Awimuth deviation.
Gil) —p

_ s which
Thus the probit, diagram immediately indicates whic

. . . . - | 15 CUTVEe
function of & to choose, For the normal distribution itsclf this cury
18, as mentioned, a straig

. . . . tapt ginee
ht line which is especially convenient ight
. .. < e o oA
the human Gye1s very sensitive to even small deviations from a stl
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line. Another great advantage of the probit diagram in this last
cage 15 that without knowing the numerical values of the parameters it
permits testing the normal form of the distribution funetion by only
geelng whether or not the curve is approximately a straight line.

Fic. 15, Height deviation.
Furthermore, it may be used for obtaining the numerical values of the
parameters p and ¢ graphically.

Example 1, In Figs. 14 and 15 we have plotted the probit dia-
grams for the deviation in agzimuth and height of the 96 shots of the
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example, §10.5, and for comparison the corresponding straight lines
v = ({ — p)/o. Again it is seen that the agrecment is extremely sat-
isfactory and much better than shown by the Fies. 8 and 9 or 10 and 11,

Exercise. We note that Figs. 14 and 15 show that the siatistical fluetnations
are larger at the ends than around ¢ = p.  Show that {his i« just what must he
expected because

1 ¥l — () [T
AL 2" U . (13
=) n pl— o T o &N\

N

Example 2. For 750 clectricity consumers the chistribptien with

regard to consumption, measured in hours of use, f, (:ux;ngp’i}ﬁding to

L 3

P ETLED)) ~

No/

PN
A\
100 |- e \¥;
R
80— N\ N
- :\\\\ )
é‘ 60 — \S ,":’::.;
o
20} A
s
:|§~ 7
$ — [ B g L
0\ 10 2 30
. § _f_ 36
A\ 103
N Fia. 18.

Nwtaximum load, is shown by the histogram in Fig. 16 (At = 100 hours}).
The corresponding probit diagram js shown in Fig. 17 and obviously
does not give a straight line, but a logarithmn-like curve, In fact, i
we plot the probit diagram against In ¢, we get a straight line as shown
in Pig, .18. Reading off the values of x and o from this graph and
caleulating n Afe(t) by means of (10.3.3) we get the theoretical curve
drawn on Fig. 16. " Both from Fig. 16 and from Fig. 18 we sce that the
distribution in question ig logarithmico-normal.

$10.8. From a graphieal picture of a histogram and the corré-
sponding theoretical curve, or f; and ¢, for a discontinuous distribu-
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tien, it 1# possible to judge the agreement between observations and
theory. Any large disagreement is very conspicuous, but it is difficult
from such a picture alone to judge in & quantitative way whether the
observations deviaste more from the theoretical curve than must be
expected from the statistical fluctuations.! Now, from Laplace’s
formufa (8.2.1) the various frequencies n; and N(¢) arc for each fixed
¢ and { approximately normally distributed for large values of .

;

i SO

-3 P,

9,
o o
4 '\’

i\\‘j

From j:lfef"dispcrsions (10.4,3), {10.5.3), and (10.6.3), respective!y, we
cap~caléulate by means of Table I1 the tolerance limits belonging ‘r:c)
anwprobability P and then see whether the frequencics observed lie
within these limits. In statistical practice it is common to take the
5% limit which from (7.4.4) is very mearly the interval (s — 2o,
# + 26), These tolerance limite may be plotted directly on the graphs
themselves and then they give a good idea of the extent of agreement.
We note that the choice of the value 5% is, of course, guite arbitrary

' As 3 matter of fact, since it is rather unlikely that all the points lie exn,ctl}.'
on the theoretical curve, it is sometimes argued that too good an agrecment
ilso shows that the theoretical curve iz not the appropriate deseription of the
ubasorvations,

Fic. 17,
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and is due only to the fact that it has been found w convenient value in
practice. As stressed in §9.3 it is always a question of personal choice
where to put the distinction between sutisfactory and unsatisfactory
agreement,.

As a rule, ¢, (&) AL, and &) are small numbers, und since they
occur only under a square root we may for a rough eslimate of the

|

\§” Fic. 18,

tcglcg‘:,{ﬁce limits write, respectively,

‘\»/\)g{n‘»} = Ve, V1 — = \ffm,{n;_i '\/]_—- q.ogN\/_??»_z'; (1)
oingd = Vine(g) A \/1_—_@{5,-) Aty =

vV aTin,) Vi1— el&:} Aty ~ \/;s @)

oING] = Vs VI Z a0 - VIOUNG} VI - ${) ~ v’.ﬁé}

assurning that the ae

tslly observed values deviate but slightly from
the mean values,

s . : mersions
This means that we may estimate the digpersion
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directly from the observations, which is very convenient, especially
if the theoretical distributions are not known beforehand.

Example 1. In Fig. 7 the vertical lines denote the intervals
in; — 2 \/?;1-, 7y + 2 4/ %;). Tt is seen that the theoretical curve lies
within these limits.

Example 2. Often the results are given in the form

ng & Vg, Y

but we stress that this is very misleading, sinee it may induce the beljef
that no values at all may be found outside this interval, althoughythis
interval is only an estimate of the tolerance limits belongim’g; to“one
definite probability, being moreover quite arbitrary, viz, xoughly 24
(ef. (7.4.3)). O

Example 3. Instead of the 5% limits, being appreximately 2 Vg,
some writers also give, mostly because of an old ytadition, the ‘‘prob-
able” limits, i.e., the 509 limits, which ares @ﬁroximatcly 24 V..
However, this is a highly inappropriate precedure, since it underesti-
mates the allowed statistical ﬂuctuations:afﬁd thus makes the observa-
ilong appear much more a.acurat-e,;’shar'x they are. This may be
dangerous, c.g., if the obgervations ate used to distinguish between two
theoretical distributions. N

X

In the methods discusscdsd far each relative frequency was treated
independently. Obvitmﬁl}ﬁ': the whole cmpirical distribution i3 a
random variable, although a many-dimensional one. Other methods
for judging quantita’{'n: ely the extent of agrecment have therefore been
worked out by :ﬁ?‘\?éating the empirical distribution as a whole (cf.
§12.16). Howéver, it is beyond the scope of this book to digcuss
In detail tl@e’inet-hods, by which we may obtain objective criteria for
reiECtingfﬁleoretical distributions which disagree with the observa-
tions £ tuch as to make them unlikely.!

19°8. We shall now treat the third question of § 10.2, that of esti-
mating the parameters. This problem is the main problem of mathe-
matical statistics. Let us consider a random variable &, one- or
rany-dimensional, and let us assume that, hypothetically, we have asso-
elated with x g distribution function ®,(z) of a definite mathematical
form but containing ome or more parameters, 1, ©* fz.2 The

* Bee e.g., Fisher, Staiistical Methods for Research Workers, Chapter IV;

Crawér, Mathematical Methods of Statistics, Chapter 30.
® For convenience we shall use throughout the rest of the book the same letter
for & random variable, x, - - -, and for the variable in the distribution function,

% - .. (For many-dimensional random varizbles the letters x, and so on,
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problem then is to estimate from a sample consisting of a certain
number, n, of observations, zi, xs, - - -, T, the “best” numerical
values of f1, + - -, 6. First of all it Is obvious that uny estimate, ¢,
for one of the parameters, 8, will be a certain funclion of L1t Ty,
£= @y, * + -, 2y, butnotof By, -+ -+, 8. Thus £ it=Jf is 2 random
variable since & new sample will give o new value of ¢ because of the
statistical Buctuations. Such a function is called o stalistic,’ and
we write

B~ \\ {1}

read: f has the estimate 2,  The distribution funciion of x\,b{-gir;g given,
that of any statistic is uniquely given and will, as o raledBgain contain
the parametors 6, - - - » 0. Now the ideul estinule of one of the
parameters 8, would, of course, be such a si.-utistir;j%N Ifat its digtribu-
tion function is for all values of n the causql)sliétril_}ution et — 8
given in (4.3.3). For in that case each mesddadment of ¢ would with
certainty give as a result the value of g Ffor which we are looking.
However, such an idea) situation hardly &ver arises in practice for any
fintle value of n, but only in the lin;"ﬁ‘m"g case of n— o, Therefore
it is natural to demand that s stz;}sié,t-i’c, t, can be regarded only as a

suitable estimate of 6 if £ —— 8, {Buch statistics are called consistent
inp c.,; »
— ey §

estimates; from A, §9.2, it foMows that, an observed value of ¢ will then
practically speaking be equal to 0 for large values of n. From Tscheby-
schefl’s inoquality (8.1(4) it follows that a sullicient (but not necessary)
condition for ¢ bqi]ig\a consistent estimate of ¢ is that owit} — 8

]

and o*{t} —o®.In particular, if, for all n, 9 (¢] = 6, ¢ is swid 0

be an unl:iﬁééd estimate of 4.

On the gther hand consistency does not tell us anything about the
prope}@es of ¢ for the relatively small valuos of n usually met in prac-
ti'q-e: Furthermore, there exist infinitely many consistent estimates

ofgn one and the same parameter § and distribution ®,(x): e.g., if t158
onsistent estimate of 4, then obviously g,t is another if ¢, js & quantity
such thatg, — 1. In order foavoid Lhis trivial possibility it isna tuzal

o= o

are vs}ctors, standing for (xy, ¥z - ¢ - ) and se on; for simplicity we shall consider
in this c.:haptor only one-dimensiona] random variables, hut the generalization 0
many-dimensional variahles is straightiorward.) Fur;hermore we shall denote
observe.d values as @y, 4g, -+ . We also remind the reader that we denote all
theoretical colicepts by Greek letters and corresponding empirical quantities by
the corresponding Roman letters, e.g., 6 and ¢

! Mozt of the terminology used hepe has been introduced by R. A. Fisher. Beo

his b apers: “Mathematical Foundations of Theoretical Statistics” and ‘“Theory
of Btatistical Estimation »
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to “normalize” the estimates by demanding that they be unbiased,
which may always be done if 9n{t} exists, Moreover, it is natural to
congider one consistent, unbiased statistic #; a better estimate of 9 if
itz probability masz iz more concentrated around @ than that of another
consistent, unblased estimate &3, the coneeniration being measured
by any suitable measure of dispersion, As sueh we shall consider
here only the dispersion, e, given by o[t} = M{(x — m{t})?} =
an{ir — M2}, Under very general conditions it may be shown! that,
for any fixed 0y, - - -, 8 and n, o2{¢] iz always larger than or eq al\
to s cortain fixed number,  In particular, if there is only one paramagtc
we have for any unbiased estimale Q

& W3

O
1 A
H 2 )
aF {t} % gy = o 02 .ln o > 0”‘;~\\ (2)
e QO

where ¢ in the continuous case is the probabilit}'\\iénsity, o = p(z; 0);
in the discontinnous case the probability, @ =\ed(#). If an (unbiased)
estimate exists such that in (2) we hagé«edualit—y, this estimate 1s
obviously the best possible; it is called an efficient estimate, fe.
(From (2) and 9{tet = 6 it follo‘:\aq'ﬁ-hat f.z 15 alsa consistent.} For
other unbiased estimates we hayed™
o
Sy, = elt] 21, (3)
¢ '\’\ g“{t}

in which ¢ is called th&efficiency of &.

Sometimes it w4y, De inconvenient to use an efficient estimate
because it muy .i@s,:’fﬂve cumbersome computations, but in_ that case
the digpersi nm;ﬂl be larger and the cslimate obtained more inaccurate
unless thig 1{\Q Sfpensated for by increasing the number of observations.

Exumfﬂé. If in Kapteyn’s distribution (10.3.2) we consi@er o a8
knsf’n; and x a8 an unknown parameter to be estimated, (2) gives

0 =

2 =,__ —1 .
' RN {%2..(— In (\/2—1r v} — _@%};_}f +n G”(x))}
-1 _
nI ‘%] o !

' With respeet to the conditions for the validity of the theorsms mentionsd i1‘1 this
topic, as well as their proofs, sce Cramér, Mathematical Methods of Slafistics,

e3peciully Chaptors 32--34.
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Taking as an estimate of u the average value (7.7.4), ic, m = (?(;)’
we see by comparing (7.7.7) with (4) that » s un unhisised, efficient
cstimate of p. Other possible estimates of x have therciove a larger
dispersion than m, which fact may be checked divertly in concrete
cases.

*Exereise 1. Tf in Kapteyn's distribution (10.3.2) we cousider w a8 known and
¢ = o% a8 an unknown parameter to he estimated, then show that (2) gives

o &\

: .2 N
et =gt = —. '{‘s’ {8)

n & )
Let, \ £
—_— e — 0% = - - |- f5 :.";'; 32
so? = (@) — ot = &t 1) = )t ’.{{\ e (6)
n W
"‘.}

Then by means of Appendix 1, and by putting y =@ as o new variable, show

that 7\ 1
;i fsg?} = o 02*&0‘% _ 2 {7
s\\' n

Thus s4% is an unbigsed, cfficicnt cst-imatt{{bf 6 = o¢? WNoxt lot
LR Y
- ‘,’0;_ . \2 . o ‘. o 33 .
0t = Gl ~ ot = ) = (Glra) = ) @®)

RN\
w%lere m = @z). Puilld S’sz G(z}, show thal ns,2/s* has the distribution (7.8.2)
withf =@ — 1. Next Show from (7.8.3) that

F

L >
" N/

4 n—1 — 1 21
:’Mslz} = o? 0'2F8122 = j — (9‘
x:\”’ k13 Tt el

'I‘2hual sz,an(n — 1} 8:% (also introduced in (7.7.16)) is an unhiased eslimate of
w2, §h}\v that s has the efficiency (n — 1) /n.

L";‘ls‘:’g!-cise 2. Ifin Kapteyn’s distribution (10.3.2) we consider » as known, fmd
»&}—;»-, and not ¢, as an unknown parameter Lo b ostimated, show that (2) gives

=]

oHE] 2 op? = g o0y
2n

Pl.ztt-iug ¥ = Glz) show that /7 805 59 defined in (6), hus the distribution {7.7.12]
with f = # (ef. ixercise 3, §7.8). By means of (7.7.14) and (7.7.15) show that

(?3—2)r
5 !
5 = J'?}—————__gn ~— i 80 (11]
20— : n— 3
3 !
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iz an unhiazed cstimate of = with dispersion

f(n—- )1 2
! .
a2l cafeego(d)
|

0_2{3,'}..____. —
! 2 n—1
2

Thus the efficiency efsy’t —— 1, and rather rapidly. Show that, forn = 2, (12)

—

4
= 0915 and, for » = 3, qw}=§afr5=0§%

gives clsg’l =

Fhow that s d(\_il(:k(‘d_ in (8) has the distribution {7.7.12) with f =n — 1, :Brom
(7.7.14) and (7.7.15) then ghow that C \
c—ﬂ! XQQ
. g(ﬂ.ia)f“‘“ n-ﬂ%‘“=v§f§és o
2 ) .\\’;

is also an unbiased cstimate of o with dispersien L+
N\

. f(n.— 3), 2 \'\\z
oA 2
e R 2 “n T | 2 il +O(—1~)» (14}

2 = et Y =
o s} 2\ 7.3 ““:wl‘ ot = >
ACEN | AN
2 :
Thus the efficiency ef{sy’} — ]\‘but slower than efso’}. Show that, for n = 2,
-n—)&é
(14} gives elsy’ —ﬁ = 04‘38 and, for n = 3, efs1’} = = 0.610.
£ fsq 2(_“ -
Finally show that, fops \¥
N/

D) — \[ PR L

we have \”

a2

\‘:' Miise} = g, ez} = (& - 2) 2_'.&
Thughs is also an unbissed estimate of &, but with the efficiency 1/{x - 2) = 0.876.

Exercise 3. We sce [rom Lxercives 1 and 2 that, if t iz an unhiased, efficient
estimate of ¢, then fig} need nof be an unbiased, cfficient estimate of f{8), How-

ever, show that if ¢ is & consistent cstimate of &, ie., £-—— 8 then f() is also a
inp
=¥ @

(18)

tonsistent estimate of f(6), L.e., f(£) — F{8).
in p
fp—r o

Exercise 4, If in the binomial distribution (4.3.4) we con?.ider » a8 known and
# 19 an unlnown parameter to be estimated, show that (2) gives
, 81— 8 an

eljt) Z ot = o
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It

xl + "t + xﬂ
= —— {18)

i

§ =

® 18

then show that & is an unbiased, eflicient estimate of .
Exercise 5. If in Poiszon’s distribution (4.3.3) & is an uuknown parameter
to be estimated, then show that (2) gives

Sl 2o = 2 as)
T
It o &\
o A\
m:£=x_1j'_—‘tﬂ‘, O {20)
n W)
O

then show that m is an unbiased, efficient cstimate of 8. \

*§$10.18. In practice two mcthods are used ti:;%)min consistent
estimates, although in special cases other eslitialcs may also be con-
venient. In this topic we shall discuss theNimethod of maximum
likelihood, which was essentially developédhby 1. A. TFisher, although
it was previously used by Gauss in a @pé&;iﬂ case. In §10.12 weshall
discuss the moment methaod, essenﬁ;}ﬂly mtroduced by K. Pearson.

First we form the probability ioi’; the given sample, assuming that
t?le % observations gy, - - - l‘f.x;,“are independent. In the discon-
tinuous case this probabilitng(«gﬁven by

LN\
P(xh:.:x\' ; xﬂ) = ®n®zy T " 7 Py, (1)
and in the continumf;\?ﬁse we have

P(xl} T ,mﬂ}d;ﬁ‘i o dxﬂ =

N\ S
Q> elee(zy) < - - plz,) day - - - dra. @)
In both\*(:a}ses P will be a funetion of Ty, c -, @, as well as of the
parq;{:g&t rs 61, ¢ -+, 6. We now consider 21, © -, Ty, as fxed and
81:,.\‘? ¥, by as variables, The function
\/} P(xl} Ty Eaj 91! oty gk) z 0 (3)

I8 then in both cases called the likelihood function. Now it i
obvious that, if 81, - - - | g, had such values that 2 would be & vers
small number, then from A, §9.2, we would not have expected to find
the sample actually observed. Such a hypothesis regarding ¢, *© *
O has therefom to be discarded ag unlikely. Now the method of mazi-
masm likelifiood simply asserts that the best possible estimates of 1, ~ *
O% are those non-constant values 1which, maximize the likelihood function.
In other words, the best estimates ¢, Ty, » ~ - @), v G kla, T

z) for 81, * + -+, 6 are obtained from the condition that P = maxi-
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mum or, what is the same, that
Inf =L{zy, © -, % 0, ©* ', ) = maximum. (4)

Thus, in general, &y, -+ + , & are obtained as the solutions of the %
likelihood eguations!

6L=%=...=G_L_O_ (5)
a0y af, 36z
The sclufions of the likelihood equations which are non-constants are
called the maximum likelihood estimates and have under v 1(y\
general condittons the following properties (for the case of only\one
parameter, £ = |): ,mf K%
Theorem 1, If an efficient (and thus unbiased and co:*?is'{s?e?ﬁ) esti-
male tg of 8 exvists, then the lWhelthood equation has a u@\qzﬁe solution
equal to 1.g. A\
Theorerm 11, The kikelihood equation has o sdldidon tn which is @
consislent estimate of 0, 1.e., by — 0. Thes sql{{{a;on s asymptotically

iy %4

normally distributed with the parameters ﬁ\é 8 and o = o® given in
(10.9.2). O

In theorem 1 the maximum likelihfiod estimate fq is said to be an
asymptotically efficient estimate of §. We stress that neither
Mt} nor 626, } need exist foraily finite values of n. Furthermore,
that if 9R{r,! exists it need\trot be equal to #; ie., fiu need not be
unbiased. Sometimes jt, @iy be convenient to make it unbiased
before using it, or perhé,‘p}* to multiply it with another factor, gn, sgch
that g, ~1and g,(> 1 (which will leave the relative dispersion

f—r &

=
unchanged). \~
Exercise 1.\xs1;éh- that (10.9.2) may also be wriiten
O 1
o\ 1 (6)

) © ans = o

A FY3

3 g"“: —_—

hod, s defined as in (4).
Example 1. For the binomial distribution (4.3.4) the likelihood
funetion is
P(xl,- o i ) ==
3 2 —, v T _ —ify e e (P) gl — B)l"‘xn‘
(x[) o (- (2 ) o =) e) T
(7)

T & has disconlinuity points with respect to the parameters it may happen
that one of these points gives the maximum value of L {cf. Problem 55).
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We here consider » as known, which is usually true, and the maximum
likelihood estimate of ¢ is then from (5) given by

i =al (LG + e i
=1

3=

[l

(nr — (214 - - a2, In {1 — )]

2SR R N el 7 S .10
8 1—8 a7
ie, N
’ o Lm o
=g =20 0 T & A\ (8)
Firy ¥ x,\\ 3

Check theorems I and T {cf. the result found ixi‘:ji“;ércisc 4, §10.9).

Example 2. Tor Poisson’s distribution (43297 the likelihood func-
tion is 4

‘O
T T 0}
P P .\= 7'__. fe eme—n 9
(xh s Ly ‘3;\%\’ ng i?;u! (9}
o« ¢
From (5) we then obtain the myXithum likelihood estimate of it
&N
‘(2& ~ a “\“:‘“ n
o o T + (= -E-Q "t Zlnp—In (H xi!):[ -
<O =1
™
\ T W s ol S
.~~,’ Qt; —n Ba ) o B .‘
‘ "< #
ie., A
e\ i R
N/ F RO o= —_— :r'i == .“. (10)
\\\ n i
MChe:gzk theorems I and II (cf. the result found in Exercise 5,§10.9).
\\Example 3. Often the possible values 0, 1, 2, - - -, will occur

several times among the values Ti, g, - - in the expressions (8)
or (10). The calculation may therefore be simplified by counting the

' . »
number of times, n;, the result, ; occurs. Thus Z n; = n, and

t

X =

i I R Zn%":

(11)

n__ X S
Hoy
[
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For example, inserting the values from the example, §10.4, we get
from (11)

o = e = 381
B o808

Theorems I and IT may be generalized to the case of more than one
purameler. I we first consider the special case in which

{ a4,

= : =k 12
36, 69;5} 0 forall ¢xE { : )\

N
then the generalization of (10.9.2) becomes: if ¢; ~ t; then KoY
'S\

! Y -1 . Phad
Pl 2 oyt = e >0, =12, o (13)
- d° ln ¢ re \ R
1) — &
38,2 o
XS
Exercise 2. Show that (13) may also be written
\\J
-1 L (14)
2= L Nt
ToE 62£ \\\\;\
where L is defined as in (4). N

‘A sot of cstimates €, + - -, t‘;,v“:f:{’):l‘nwhich the equality hold in (13)
for all the #/s is called a set of joint eflicient estimates. Substitut-
ing in I and IT “joint efficief” for “cfficient,” I and II also hold for
more than one pammet@\\ﬁth oo given in (18), if (12) is fulfilled.

If (12) is not fulfifled we have to consider the moment matrix
My of g set of el <t efficient cstimates, #1, * © * 5 tx (of. Example 2,
§6.4), and in (13) &;;:g %s then to be replaced by the diagonal elements of
My™, which ig«éiven by the natural generalization of (14):

O #*L ||t
M= (g, — 0t — 8] = — l*m [59 ) W
'\ r 2

E er\)ﬁ;e 3. Show that under the condition (12) eq. (15) reduces to (14).

Example 4. For Kapteyn's distribution (10.3.2) the likelihood
function iz

Play, - - -

1 i3
i o) (72:;) |
exp [— 5ot (Ga) — w4 -+ (O - m]-
Gz - * @ law). (16)
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From (5) the maximum likelihood estimate of y is given by

du 7

L2 VR - nlne - S ) 6 — 07 +
F
i=1

1 n
ml e ==Y e —w =0
a[fow] =4 e -0 =0
i=1 im1
ie,
Ha - 4 Gl - A\
poeom = (zy) + . + Glzn) = x). ':“.’,'\ (17)
i.\'\ .
For the maximum likelihood estimate of ¢ we find .\«
i) ‘:\\\ ’
oL ] Ay
"; = __+'U_32(G(%) — & 0,
i=1
ie, O
R\
A I\ S
g8 = ;2 (Glwd) —m)*} = (G —mH" 18
Al
i=1 ’\':‘:‘(
Finally, since M {G(x)} = u ad@on{(Gx) — %] = o,

SERESEE B

W;l O In 3 2 2n
M _’.'.::j‘[‘ [ i) — 2 = — —3 18
ISU:~ g - PP (G K } a* ( /
:o N/ f=1

and ®
\w

™ 8°L 2
M\\*m doapl T ;z (Gxs) — #)] = 0.

86 from (15)

ook = 2o 2 (20)

Check theorems I and II (cf. the results of the example and exercises 1
and 2, $10.9).

Exercise 4. If in Kapteyn's distribution we consider, hesides u, 2 = ",E anq
not o itself as the parameter to be estimated, show that the maximum likelihoo
estimate of ¢% iz 512 where s; given in (18} is the maxirnum likelihood estimate of -
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Genevalizing this result, show thal, if 8 = fiy, then f(8) = f(hu). We note that,
it {is o consistent esiimate of 8, then f{2) is also a consislent estimate of f(8}, but
that the properties unbiasness and efficicncy may be destroyed by such a trans-
formation (o, Wxercise 3, §10.9).

Tn the previous examples we have seen that, if a parameter was just
the mean. 4, the best estimate m of ¢ was the average, m = 2. How-
ever, this 1s not abways frue.

Example 5. As a striking counter example we shall mention,
Cauchy's distribution (4.4.9). As discussed in Example 3, 8.1, & had
here the same distribution as x, and so m = I is not cven a conﬁa{tept
estimate of 1 as a matter of fact it does not contain any more zii@jorrha-
tion about x than a single measurement does. A\

. . e , AN ) S
Exercise3. For Lapluce’s distribution (4.4.10), with 3T {x} R Iz} = Ve

. . a % 3
show that the best estimates of gund aare p ~ m = zy and\avs o = |z — zy| =

21— gag| e o e | — A\ :

|" - ] - e [on x'”I, where zp denotes the Q‘l‘nple moedian {ef. p. 55},
7 ¥

Le,ifao; £ 22 £+ * * = z,, then for n odd = '}\n}k for & = (rn +1)/2, and for

% evor @ may he any number hoetween &,z &0t 2)+1.

*£10,11. For corlain dist-ributipn%: Yhere exist so-called sufficient
estimates, 1.0., cstimates which fam\ahy vatue of # contain all the infor-
mation about the parameter eoncerncd, which it is at all possible to
extract from the sample $12'~\\ " Za. Mathematically expressed S‘U}Ch
un estimate, £, has tMe{property that, if in the likelihood function

(10.10.3) we transfgem " from the variables @1, ©* ", #n to ;=
(e, » - -, an) an.”n — 1 other variables wi{z1, - ° Tely T
Ua_1(zy, - -+ a2kl lhen in the case of only one pa.rameterﬁthe param-

eter does nojrehter in the conditioned probability distribution of w1,
", ugeNinder the condition that £, has assumed the value f5.
In othen Sﬂ%rds, the likelihood function may be written

N

'\
O Py, e g 0) = gl OB, 0 el 1)

where ¢ gives the marginal distribution of ¢, Which depends on 6, and
h gives the conditioned distribution of @1, * * ° , Un—1s which does not
depend on 0. Thus, if the value of &, is known, the knOR’IBQge of the
values of uy, - - - |, m,_; cunnot give us any further informatlon.about
5, which means that all the information about # contained in the
sample is also contained in &, ,

The generalization to the case of more than one parameter is obvious:
o set of cstimates 45, - - ¢, Gz of 01, *  * 5 % ({2 k)is ealled a set
of joint sufficient estimates of 61, - - -, 65, if 1638 possible to trans-
form from €1, C v, %y tO tafy, 0 - ,ﬁsl(xl} B
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track belongs to either fragment, the distribution of x is a socalled
double Poisson distribution
Le ™ gy

Wy = § T é‘ ?,_!“—: = 0, 1 2, eom oL (4)

Here we have two paramocters to estimate, p" and p”, and thus we
have to calculate the first two moments of (1}, I'rom (0.1.6) and
(5.3.11) we find

po =1, wr =15 + 280", w» = py + lop - lf«w”'% (5)

s.'x

The solution of these equations is readily found to be i\\

L

*

i ' . . . A _.
v = H1 T \/P-_ﬁ — M1 — ,u.t“,-x'.\\ (6)

e \~
In Table 1 we give the distribution of n&‘ 327 uranium [gsion
fragments, »; giving the number of frachs SNFIEh ¢ brunches!  From

z~
TARLE L\\
) E “:‘§ ) sigi”
—_— __\‘¢—-— —_ .

0 28‘&“ 0 0

1 %‘r 47 47

2 A 162 324

s > e 201 603

4\ » 53 212 848

\ -~ 24 120 600

RS i3 78 468

N T 8 56 302

.\., 8 3 24 102

A\ 9 2 18 162

AW 10 1 10 100
\\ — | ; _

A Q) 327 928 3736

w\ w4 — -——

1¢ table we find the empirical roments

0
i

91~m1—327 nit = 28379
i=0 (7}
1in

B m 1 2 = 11.425

2 A = —— G = .
2 37 Tt .

i=0

! Baggild, Brostrgm, and Lauritzen, Danske Vid, Selsk. Mat-fys, Medd, vol
XVITIL, No. 4. 1940,
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Equation (6) Lhen gives
p =~ 3.5684 and  p/ =~ 23075 (8)
Thus the two mean values are definitely different,

Exercisc 3. Compute from (4) and (8) the theorctical distribution vy = ney
and show graphically that the agreement with the empirical distribution of Table
1is sabisfuetory.  Also compule the single Poiszon distribution (4.8.3) for which
from (T} g = my = 2.5879, and show that this distribution agrees only puor]{

with the empirical distribution of Table 1. "\
*Exereise 4. The distribulion (4} is ondy a special case of the genera.l,dq%le
Poisson distribulion »\" s
8—;1’”!1' 8_"‘”;;”‘: iw}
gi=vi—— Fym—— ntr=L § 1)
2 2! (™
N
having three independent parameters to estimate, p', o'/, a.m:].%;.
Introducing the abbreviations "/
Bi =y, Bz=u —py O3 =ps3 -X-{ﬁg:-k 21, (10
show that p"' is & root of the equation O\

S
(82~ B’ — (o — P10t + 2(afs — a")o € BBa(By = 617" —
(@I g0z + palbuss — ) = 0. (1)

Next show that p', v1, and v are giy;aikb’y

A '
, _Bs— ﬁw”x'\> W=k _Fime (12)
k= e ]-_u.-;_#r’ 12'_#:.-_”1

g2 — aYy

¢ & \/

*Exorcise 5, Denotﬁ;g\)\y b1, be, b3 the corresponding empirical values of f1,
B2, By find from Table J\the values

& e
7\ =-—— Y ng®=056.398
~\C T
N =0 (13)
A\ by — 2.8379, by = 8.5872, bs = 27798,
n‘nd{éﬁ deduce the values
W yy R 027413, vz == 0.72587, "

o~ £.0276, ' = 2.3886.

Finally com pute from (9) and {14} the theoretical distribution »; = Ry and show
f Table 1 just as well as the

geaphically that it fils the cmpirical distribution o ; a
special double Poisson distribution for which vi =72 = 14, Thus en}pmcally
¥e cannot in this case distinguish hetween the general and the special form.
However, for theoretical reasons the latter is to be preferred.



11.

APPLICATION OF THE THEORY OF
PROBABILITY TO THE THEORY OF ERRORS

AN
§11.1. By the theory of errors—a somewhat unfortuphtebut now
generally adopted name—is understood that special beanch of sta-
tistics which deals with the numerical delermin ‘tion of physical
quantities. However, since the normal distribntidn is always used
here, the methods of this chapter may be apph¥diwhencyver the normal
distribution, or Kapteyn’s generalization of it Nhuy be regarded as giv-
ing a satisfactory deseription of the statisi’)s:il phenomensa considered.
The four questions considered in th@ theory of errors arc ihe fol-
lowing: I. What is to be understood ihiy‘the “true’” value of a physical
quantity? II. In practice, how paﬁ. the true values be estimated from
measurements? IIT, What Qei'{-aTnty ean we attribute to the esti-
mates? IV. How can we cé{ﬁﬁare estimates obtaincd {from different
sets of measurcments?
$11.2, Before answering question I, we must first of all realize that
& physical quantitf gy defined by a certain measuring prescript, is,
in contrast to a Wuthematical quantity, never so cxuctly defined that
any one definitéhiimber rather than all other numbors can be regarded
as giving the*true” value of the quantity. Boeause of the limit-e_d
PCI'feCtiOZEI“Qf' our senses and of all our measuring instrumenis there 18
a-l“’ayw ertain limitation as to how small a quantity we can obgerve.
As axesult of this fact we can state only a finite, although larger o7
zméller, number of digits. Or, in other words, arery empirically Formed
Npidumber dis an integer when expressed in unils of the smallest unil, & thol
the measuring apparatus can measure. Thus any real number within
an interval of length e may be called the “truc” valuc of the quantity.
Furthermore, this uncertainty in definition is, as a rule, small as com-
pared to the uncertaintios arising from the measuring errors which we
have discussed in §1.2, Nevertheless, since an indefinile jmprove”
ment of the accuracy of our measuring technique seems possible 18
principle, it is for a mathematical description a natural idea to abstract
from these uncertaintics and to idealize our obscrvations by selecting
one definite number as the frue value of the quantity considered. It
152
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is just these truce values, and not the directly observed values, which
enter into our model of the reality (§1.1), viz., the laws of classical
physics. In quantum theory, this idealization has turned ouf to be
too coarse for atomic phenomena. Instead of such a causul deserip-
tion in which all quantities have definite values, we musl in our modei
also use a stalistieal deseription by means of diztribution functions
differing from the causal distribution (ef. §4.17). Comparing our dis-
cussions of the concepts “true value’ and “probability,” we see that
“probability” is not different from the “true value” of any otéer
physical guantities. Probabilities arc simply the true valdes of
special quantities, viz., relative frequencies. o\
§11.3. We shall now negleet the uncertainties inherent fn the defini-
tions proper and diseuss only those arising from f.h{xz.égééaurements.
As discussed in §1.2 the imperfections of our measuriig4nstruments as
well as disturbing factors always present result<dnthe fact that every
measured result is o random variable, because xopeated measurcments
of one and the same quantity, of the constaney of which we feel con-
vineed, will vield different values. Weexpress this fact by saying
that the measurcments are cncumberad‘}vith errors causing the values
measured to deviate more or 1es§.;f¥£;m the true values. This will,
of course, be the case only if thewheasuring instruments are not too
coarse. If, e.g., the distance ‘between two fne marks on a steel rod
is 20078 m and we measuregt with a rule which has only divisionz af
every meler, cuch measutghent will give the result “9m,” Therefore
1t is always assumed,that the measuring instrument is ¢hosen such that
the smallest unit it‘cin measure is small compared with the quantity
messured, P\
Brrors ave! ﬁ’i{rided into three groups: (I} Coarse or gross errors.
(IT) S-ysié&iai‘ié errors.  (111) Statistical or random errors.
Coarse, érrors are crrors in reading the instruments,
tiongSwauscd by wrong trealment of the instruments, or simply by
@k'of carc on the observer's part. Of course, such errors should be
avdided. Observations encumbered with coarse errors arc usually
immediately conspicuous because they have values quite different
from the other obscrvations. (In ordnance one speals of stray shot;s.)
In the following we shall assume thab ohservations encumbered with
coarse errors have already been discarded (however, of. §11-_17)-
Systematic errors are errors due to one or to a few deﬁmfse cauises
acting according to a definite law and, as a rule, in one definite diree-
tion. If a measurement is repeated under constant conditions, the
same systematic errors will occur. Consequently, in contrast to the
eoarss errors, systematic errors will not show up in any disagreement

in computa-



154  PROBABILITY AND THECRY OF LLRRORS [Case. 11

among the different results, but only displace them by a constant
amount. However, if the laws governing the systemuntic errors are
known, these errors can be caleulated and treated ag corrections 1o the
values measured. Most systematic crrors ave enused by the instru-
ments. If, e.g., a length is measured with » rile a litile shorter than
its divisions state, cach measurcment swill aive too large a result,
However, this error will nof be noiiced unless the measurement s
repeated with a second rule. Such comparisons between the results
obtained by different measuring instruments is the most effitient
method for defecting systematic errors. In Lhe following e shall
assume that our measurements have been correcied for bengwet! gy stem-
atic crrors. A7

Random errors are all the other orrors \\'hiclr@lo“’not show any
regularitics or the regularities of which we do_ngh know. Sometimes
the word errors is applied only to the sysbemdatic errors, the word
uncertainties to the random errors. Mog seanidom crrors arise from
the interpolation necessary in reading seiles, from the adjustment of
the measuring instruments, from the'ﬁ&éﬁmfmtturiug of the seales and
standards, and furthermore from all the dis turbing fuctors as diseussed
in §1.2. In general, itis a charaef@ristic feature of random errors, in
contrast to the systematic erro,r,s:; that positive und negative values ars
equally probable, However,:éf'rors having skew digtributions may be
found; these are the so-c Med one-sided errors. By closer investigation
one-sided errors often M out to be systemalic errors.  Ax an example
of a one-sided error we may mention the curvature in the axes of
opfical instrumentfs:

The distinetidt/between the various groups of errors is, however, nob
sharp. By eloser investigation some of the random errors may show
regularitie®)™ Thus an error we have previously classified as random
may 1.~ turn out to be systematic. Casually there may also appear
& particularly large error which may be mistaken for a coarse errot
T?U\J m practice it is not always easy to judge whether or not a meas-

Nurement, which deviates conspicuously from the other meagurements
should be rejected (cf. §11.17).

$11L.4, To a given physical quantity x and to a given measuring
method we now associate g certain distribution function ®{z) (_"f‘
footnote 2, p. 137),  We stress that ®(x) alse depends on the measuring
method. 1In fact, g physical quantity is not defined before a method
of measuring it has been stated. The four questions in §11.1 cannot
be answered independent of ®(z). Howevcer, experience has Sho“’.n
that most physical measurements—corrected for coarse and systematic
ertors—are approximately normally distributed, a fact which may be
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explained theorctically (ef. Example 1, §10.3). We shall therefore
base the theory of errors on the normal distribution

dP = o(z) dz = 21._ exp [— M] dzx, (1)

z
T o 20

although strictly speaking every physieal quantity is a discontinuous
variable. However, if the statistical Auctuations are large as com-
pared with the smallest measurable unit, the distribution will gve a
large number of very small steps and thus may be approximated'by a
continuouy distribution (cf. p. 32}. R\

Since, {irsf, the parameter g is equal to the mean Vah,}ei which gives
the order of magnitude of x (cf. IV, §9.3) and, secon,d{tﬁe normal dis-
tribution is symmelic about = g, it is natural t  ehote ¢ by defini-
tion as the “true’ value of the physical quantify)s. We stress that
from thiz definilion the true value dependgsglso on the method of
measurement applied.  Thus it is an Imporfamt task to decide whether
or not two different values for the truewalte obtained by two diflerent
methods of measuring are in agreeménd within the statistical fluctua-
tions (ef. §11.15). If they disagreesignificantly this fact shows either
thut we have nof measured the,ﬁséfﬁe guantity or that certain system-
atie errors have been over]quéd. ‘We then obtain the true value
when Lhese systematic efrors have been localized and taken into
account. \

§11.5. We shall Iiﬁ\'v\'discuss the next guestion: how, from measure-
ments, 10 estimate™the numerical value of u.  Physical messurements
fall into two grédps: direct and indircet measurements. In a direct
measuremer;&%mhh as the measurement of & length, a mass, of & current
with an affifteter, the numerical result is obtained directly from the
obsery, ‘l%ﬁs In an indirect measurement such as the measurement
of sppéj ¢ resistance, p = nRd%/4l, of a wire with total resistance R,
ledghh 7, and diameter 4, the result has to be computed from t'}.le

Sgbservations, the quantity to be measured being a function of certain
other quaniities which are measured directly. We shall first COHSId?r
dircet measurements exclusively, discussing indirect measurements 1
$11.22.  To determine the true value, g, of the quantity x considered,
it is, becanse of the statistical fluctuations, insufficient to perform only
one measurement of . Only in those cases where it may pe expected
n advance, ¢.g., from earlier measurcments, that thehs{‘;a,mstlcal ﬂuctga-
tions will be small is a single measurement, o1, sufficient. AC-C-O.TdII}g
to the method of maximum likelihood, z; will then be the bes't- estimate
of u. In general, the measurement must be repeated a certam number
of times, giving the results z1, 2, * * * s Tn- As shown in Example 4
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§10.10, putting G(z) = =z, in which case Kapieyn’s distribution (10.3.2;
reduces to the normal (11.4.1), the best cstimate of the true value r
18

pE=m=F = e = (1)

As shown in the example, §10.9, m is for all values of # an unbiased,
efficient estimate of u. In (1)

H / \
" \\ )
o) = ) o @
i~ 1 i”\: ~

is a symbol introduced by Gauss and still much uscsl}ir;the theory of
crrors.  I$ is also useful in the theory of erl'gn‘,k\m' introduce the
“true errors,”! or the residuals, -

& = I; — p, =125, n 3)
and the “best errors” \\\({\
4 \,
v =@ = F 41,2 ,n (4)
A
Exercise 1. Show that N\
oSN n
R 4 v
«\I = vy = 4. f:i)}
H&\ =1
Next show that ¢ 2\J
n
WD @ =2 = o] = () 4 niE — x')?, ®!
\NCE=1

. Y-\ . .
where 9;’ = :zt,\— 2" and 2’ is an arbitrary number,

W

H 4 / 3 . . . 1
Slnie\\ﬁ appears in the likelihood function only in the expression

M\Z\,(w; — 1)? = [ee] (cf. (10.10.16)), we sec that for a normal disteibu-

=1

\‘fion the best estimate of 4 is obtained by the condition that the best
errors satisfy

n
=
[w] = z (#; — £)* = minimum. {7
i=h

. 'I.‘he error is the quantity that must he added to the “truc value” in Urdel: ‘u:i
obtain the measured value; the error with sign reversed is called the eorreciioR:

true value + error = measured value

meagured value + correclion = true value.
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This famous prineiple is called the method of least squares.! From
{6) we see that 2’ = Z really corresponds to the smallest possible value
of {v'']. : -
Excrcise 2.  For the best errora (4) show that
m:vi}=ﬂs ?:=1,2,"',?3. (8}

Furthermore show that

Je=l N
and thus O
,
2oy} =(1""i) f*+—lacr?+--- -|-lgcrz=n 1ff“":\.\
i i k3 n ~
‘a1, 2 0, (10)
Finally show that )
Miteolt = (n — Lgfn (an

in agreement with (7.7.13) since ¢ = fvrl. \§:§\

TFrom Exercisc 2 it follows that‘,g‘a\ch v;, being a sum of normally
distributed independent variablesy is normally distributed with the
parameters 0 and I-L—-:-% &_&“However, because of the constraint

Tl N\
(8) the v’s are not ing:ge?ﬁent.
*Exercisc 3. Show Q‘tﬁ}b}
O -1

plom o = —p  iA]

P Nk {12)
PN\Y;
but AN
*j}{’ el & =l =0
§11¢6.&\AS shown in Example 4, §10.10, the best estimate of the
D&r;l&tlgﬁer o is given by
&\ ]

A

a3

()

a = 5

However, as discussed in Txercise 2, §10.9, 31 s only an asyml?t-otically
unbiased and efficient estimate of «, and of course there exist many
other eslimates which are also asymptotically unbiased and eﬁime_nt,
®.g., all estimates of the form gns1, where g ~ 1 and A, 1, which
have the same relative dispersion as s1. In statistical practice it is

! Freneh, méthode des moindres carrés; German, Methode der kleinsten

Quadraie,
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. s e g %
customary to use s defined in (7.7.16), ie., to choose g, = \/ T
H —

o | n . \[ -[-:;,'s.-']
FES= 7 — 1'Sl Ny .I.} @)

where n — 1 = § is called the degree of freedom. Whether 1o use
g1 or 8 18 a question of personal choice. Ilowever, ag discusged n
§11.10, s has certain advantages over sy, as a conscguence of\xﬁich 8
18, us a rule, preferred. ' O\

§11.7, The two estimates, T and s, for the paramelcps ‘and o are
themsclves random variables, being subject 1o statistioafuctuations,
L.e, giving other values if the » measurements froz'rxﬁ\:ﬁi[_:l1 they have
been calculated arc repeated. In order to esiifae their aceurscy
we next determine the digpersions of  and s <3¢ discussed in §7.5, p.
88, Z is for all valucs of # normally distribLKse.;i with moean value p and
dispersion o/V n, ie., (€

\\ " -
olil = 0 o SO ]
SRVt FTost Ty .

furthermore, we have seen th&{;\/ n—1s= ¢ has the g-distribution
{7.7.12), which for large ya,[ﬁés of # is approximaicly normal.  T'rom
(7.7.18) and (7.7.19) ‘s.ﬁs\ approximately normally distributed with
mean value o and digpéfsion a/f \/5(7':, — l'j, 8o that

a{s} A N N Vi )
NIV -1 Vam o V2 - 1)

E"a"‘{y‘;l- Wo note thal (2} shows that, if there were no other

reasongd prefer s over s, they would he equally good, because for

n'}«'&i‘ffes_that are not too small their difference is small as compared
.»u:t{?;}.) their digpersion:
3

R G

(==Y

. L /
which is just small as compared with sis} =~ Skx_/_lzt + )
2n

. . O
Another argument ofien presented for preferring s over s; ig that $° 1

an unbiased estimate of ¢%, whereas s1% i3 not (cf. Lixercise 1, $10.9%
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However, firsl, it is more natural to consider ¢ and not ¢® as the param-
eter to be esiimated as long as we do not introduce another letter for
¢%; but in this case neither s nor &1 is unbiased {cf. Exercise 2, §10.9).
Second, both s and s; converge in probability towards ¢, which means
that for large n the probability mass of both estimates, having the
same reloffve dispersions, i3 concentrated about o) but in this case
their difference is small compared fo their dispersions, as shown
above. On the other hand, o{s} tends so slowly towards 0 that the
actually observed value need not lie very cloge to o unless # is extremely
large. The only reason for preferring s over s, if at all, iz thafi giyen

in §11.10. &
The final result of the n measurements %1, = - * , Tn 18 @ﬁ‘s’ given Gs:

Eettmaic of the true value: \\

_ 4] g AN s

po=E == with dispersion: g {Fh= —= 3)

R 7\t 7

L&
Estimaie of the dispersion: O

N

- [1_1,]d 8

=g o=, LT ith dis e-rjs;ib:?té Fi8] = ——
. \/ﬁ- -1 e p,‘ e} v2n — 1)

1

4
Often the dizpersion of a sta.t-jst-i(; is called its standard error, mean-
square error, or simply medn error.! The dispersion, o, itself is,
expecially in older litefafiire, called the standard or mean error of a
single measurement, which is a rather unfortunate notation. _

We stress thaty, €6, Judge the values of 7 and s, their dispersions
showuld always ?;eineﬁ, or in any case the number, #, of measurcments
from which_tle ¥slucs have been obtained.

E"am.lf'hs\l Sometimes the result is given in the form

o N
O~ Py -2 S % 5

\/ u—-ci\/;; or pﬂzilooi‘\/ﬂ% )
However, first, we have not g = &, but g =~ & Second, p may very
well have values outside this interval and still be compatible with the
vilues F and s observed (cf. §11.9). Equation (6) is therefore very
nisleading and should be avoided, (3) being preferable.
As mentioned in §7.4 another parameter i sometimes us:ed, espe-
¢ially in older literature, instead of o, viz., p = 0.67449¢, which is the
- 909% tolerance limit. The result is then written

aadratische Fehler.

T Franel ]
French, &eart type; German, mitilere q
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&
=Z+0674—— =F + —=s r = {).674s, 6
“ v'n (8)

Since & measurement i3 just as likely to fall inside as outside the 509
tolerance limit a statement like (6) is certain to losd to an under
estimation of the accuracy of Z, and it should therefore never be used,
Example 3. Instead of s as given in (1) other cstimates of ¢ are
also used, e.g., sy given In (10.9.15) Ior a rough estimaten as s
often sufficient in engineering, it is very convenicnt to find,ihe largest
value, 2n,, and the smallest, 7., among the n nhsem-'a}iifdngi yund then
£ )
to pub p = mi = Yltaw + Tuw) and ¢ = g5 = —,JL-;,’;(&.‘-?;; ~ Toin), 10
which @, is determined =o that Misz] = a":}m = Tox — i 18
called the range.) It may be shown thal, i and sy are consistent,
but very inefficient estimates of p and . e function «, has been
tabulated.! For example, we find aw} 308, agy = 4.09, e =
5.02, and asp; = 6.07, OO

*Exercise. An estimate sometimes ugett! c.g., in ordnance, is

_Vrdit AN,
2

84 s
Jihe 1
N ®

v ds o= |z~ 2],

where the dy's are called the @ccesgivc dilferences,  Show that sy is an unh [3595{
estimate of v. By a somb}hat lengthy ealeulation it may he shown that 5418
2\

i N ¢ < w | —_ t
& consistent estimate th the efficiency elss} = 0.61 i :

¥

§11.8. Hw€know » and o, then the tolerance limits, ie., the
limits (asygairéd, as a rule, to lie symmetric about p) within which »
lies wi 1 3 given probability 1 — P, may be found for all values of P
from{Table IT (cf. §7.4). Because of the statistical fuctuations of
both*Z and s these values may not be substituted tmmediately for

~and ¢ in the cxpressions for Lhe olerance limits, although this is often
dor}e. However, in the tdistribution (7.9.3) we have a distribution
which does not econtain the parameters ¢ and ¢ themselves and from
which we can estimate the tolerance limits of a new measurement,
¥nt-1y 00 the basis of 7 and s ealoulated from a sample zy, © © "5

(1

i=1

! 8ee the discussion ang literature in Cramér, Mothematical Methods of Statisties,

P 374 A table of o, for x — 1 — 1000 is o in L. T Tinoetl, Biometriia,
17, 364, 1625, 13 given in L. TI. C. Tippetd,
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We then form the new random variable

o B @

\/1 +:-‘115

which as shown in Exercise 2, §7.9, has the #distribution (7.9.3) with
f=mn— 1. Ift(P,f) denotes the solution of the equation P(|¢ = ¢) 2
P, which i tabulated in Table III, then A\

Pl-up,f) s 5=== 24P, )\ =1 - P. C
\Kl—{——s
n ¢

But this may also be written, golving the inequalitieéh}r Tt 1o
. {1 _ PN
P x_'\lll_"'_Si(P:f)éxn+1§x+ ]_-{—‘-{Fj (P!f) =1-F, (4)
k1 N \?’L

O\ .
Thus corresponding to a given value of P'the tolerance limits of a new
measurenent, x,..1, yet to be performed, are estimated from the given
sample to he N

/ 1 ; N _ 1
-1+~ .qx:;g@), E A1+ si® ) (8)
0\ 2

Since the é~distributioxf &L{ds to the normalized normal distribution

,\,4'1 + l t(P, £y wil for #— = tend to the
i

for n— «», the 'faﬂj(;‘:t’(;l"

C-Onespondin.g‘~f3\01-})r as obtained from Table II. In practice it is
customary .t}\xt.hoose P =5%.

E"alﬂiﬁ'e- For the 10 measurements given in the example, §11.11,

Z =410759 and s = 0.0039. Since f =10 — 1 =9 and {(5%, 9) =
7 —— - ) i .

2.262'from Table T1I, we have V1 + Ko (5%, 9) = 2371, which is
considerably larger thun £(5%, «) = 1.96. Thus we find the toler-
ance limits for a new measurement to be 4.0769 + 0.0039 - 2.371 ~
40759 & 0.0002. _

§11.9. In (11.7.3) we have given the best catimate of the true value
H &, und its dispersion, s/ vV'n. Now pis a definite, although unknown,
tonstant, 1.6., a parameter and not a random variable. Thus we ¢annot
Speak of the probability of x lying inside certain limits, say + s/ g .
HOWe\rer, we may ask for the valucs of g which are fzompatlble mlth
the obscrved values. To that purpose we may again use the ¢-dis-
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tribution (7.9.3), forming the random variahle

P 1)
v
which as shown in Exercise 2, §7.9, has the distribuiion (7.9.3) with
f=n— 1. If 1 is varied, so Is the value of ¢, and it i+ now reasonable
to consider a definite value of u compatible with (he sample ol'ﬂsél'ved,
&y, v v, &g, 1t the corresponding f-value lies within reasonable limits,
for which it is customary to tuke the 59 limits. Thus_&"if &P, f) has
the same meaning as in §11.8, u ig considered comprlible with the
sample if it satisfes the equation \

&

Pl-up,p ™ * <yp pV X0 p. (2)

"\

Solving the inequalities for g this ma;:f ':ﬂéo be wrilten

%
.
8 Al

P(i—--—tP, < pSF -f:zp-n)=1.—P- 8)
\/?; ( f) _f‘%.._ —[_ o ( rf.

These limits of p are called @onfidence or fiducial limits, Wo stres
that the concept of ch‘ﬁ}enee limits must not be confused with that
of tolerance limits di%s\liésed in the preceding topie. 'The latier are
probability limit-?,: for o random variable; the former, limits of com-
patibility with, ébservations for a paramecter.

Examplg:.>f['“or the 10 measurements given in the cxample, $1111,
= 4.0§\9"a.nd s/V10 = 0.0012. Since f = 10 — 1 = § and from
Table\MI 1(59%,9) = 2.262, we get the confidence limits of the true
):3}182;@'4.0?59 + 0.0027 = (4.0732, 4.0786).

VW1l.10, Unfortunately it is not always practicable,
Perform the great number of measurements necessary to get from
{11.7.4) & reliable estimate of o. However, we often have many shor
series of measurements belonging to different values of p but taken
under the same conditions and, therefore, having the same accuracd
L.e., the same value of ¢. Bince the distribution of g = '\/E?f"”]r (7"7'.1 2,
depends only on s and f(=n — 1), but not on g, it may be Conve.meﬂ"f-
to treat ¢ as tho primary variable, but not the 'direct.ly measured 8
from which ¢ has been caleulated. In the latter casc the 7 measure
ments, x1, * - -, 1z, represont n observaticns of the random variable
%, but in the former only one measurement of Lhe random variable 4

or possible, 0
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Thus we shall expect to find different estimates of the same parameter
¢ in the two cases.

Let us assume that we have m series of measurements of x, consisting
of m1, - - * , 7, Dleasurements, respectively, i.e., with the degrees of
freedom fH =01 — 1, * * * , fm=np— 1 Letg= \/[m:] from the
m serics be gy = Vi, © © 0, gm = Vi, 1.8, let 51 = gl/\/fl,

C G = Gl \/; ha the m estimates of ¢ obtained from each serics.
Assuming, of course, the m series to be independent, the likelihoad

function (10.10.3) becomes, from (7.7.12), 2\
P(fh, Ty Gy .fl: e sfm) = i"‘i "/
const it w1 1 AR
—m(gi) o (9—) exp [——._;_(g12+ o] o
v T G 2¢ ¢
Thus the maximum likelihood estimate of o is thesolution of
D
8L @ f o an
— = — I = — = —/ = 0 2
5o "o F = T @
Y ;
e R e . TRy ol "ol R A L
_
s \/ ol .f.i’?ii‘— Do + -+ (= D’
Vi 'n—moz\ T =L+ F e 1)
A\ 3)

<O
From (10.10.6) thc.asygptotic dispersion of s, which is asymptotically
normally distribuEégl'\xrit-h mean value o, is given by
2K .

:.\'w' 1 -1 .

NP {s) = ST = =5 (4
N\ §°L ! g f
SHE = B s

(checkY. Thus
VvV PR S 5)
ots) Vo V2 —m)

We see that, although
e by n or

For m = 1 these formulae reduce to (11.7.4}. a
for a single series, m = 1, it is unessential whether we divide by % 0
7, 1t is cssentinl when we add several series for estimating o, since it is
the degrees of frecdom which are added, not the number .of measure-
ments, This 1s the only reason why i may be more CONVERIER
T over g1,

This method of estimating ¢ is very
therefore, be used much more than it is in con

{ to prefer

usefu! in practice and should,
temporary literature.
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Thus we often repeat & measurement in order {o check for coarse
errors, and in such cases one double measurement s (uite uscless for
estimating ¢.  But if we have a number of double measuremonts with
the same accuracy, i.e., the same ¢ (but possibly dilfcrent values of )
they can nevertheless be used for an accurate estimate of o,

§11.11. The numcrical computation of & and « may be simplificd
by first guessing a preliminary value of %, =% We then bave

H

0 0 L0 7
E=&]=h’__1"y_]:x0+u, \\\(U
n n n A\ *
where «f "
o =z, — 29 D (2)

To check this ealculation we may compute the best;e’;‘%rs’, v = @y — &
and check whether they satisfy ( 11.5.5), vliz., [v]~~%‘0. Next, putting
&' = 2%in {11.5.6) we have v

2] = [%"] — n(z — x”)eﬁ"ﬁu\;ﬂ} _ W

A\
N
As a check we may aguin compute 'the’\};zst errors and sco whether they
satisfy N °

(3}

’~ 2
v} = (27 — ﬂ: (4)

AN\
which is obtained fl'om:('NB.G) by putting =’ = 0.
0\ 4

Ex.amp]e. By %0\%@dings of a micrometer the results 1, * *
10 glven 1n the table are obtained, Using (1) and (3) the computa-

tions then runwgfollows-:

$
'\\iw} e T v’ ™
R P o R B

1 4.078 3 x 103 9 x 107°
\\ 2 | 4.080 5 25
V 3 | 4.0m —4 16
1 | 4.076 1 1
5 | 4.08t 6 36
6 . 4.077 2 1
7 | 4,075 0 0
8 | 4073 | —p 4
G d0m T g L 16
10 P 4089 1 -—p 36

% 9 X 10-3 147 x 107°
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2° = 4.075
[v°] =9 X 1078
[0%% = 147 x 1078
[vw] = (147 — 83{g) X 107% = 138.9 X 107~

Il

F=4075 4+ %o X 167% = 40759

e \/138.9 \\

220 % 1078 = 0.00303 KoY
9 O ~
T _ 000124 A\
Vie N
s ! ’..}\"
“\17@ = {),000926 v
[ .‘\\.’.
Result: &

R

o~ %=40759  with standard error 0.0012
\v

g~ 5 = (L0039 With,ts},anda-rd error 0.0009.

PR
We see from this example +that in most of the computations only
small integers ocour so that mf;s?t of them may be performed mentally.
§$11.12, If the observ{it}e}xs have already been grouped anf_l if n is
so large that the Affffare small, we may, to a good approximation,
put all the values id\a class equal to the value of the middle point of
the class, ;. Th We obtain (cf. §10.5)

'\"' RN o ol {n]
andd ,};\
»\f“}}’f@ﬂl ~at ~ B Tl — B =D 2

h\ﬁ}g&in we first make a preliminary guess as to 7, z° equal’t-o one of
the ¢/s, £, we obtain again very simple computations, cs.pemally 1fu all
the class intervals are of equal length. In fact, putting =t =
r; Af, we have

F=1t"4 At%ﬂ
[ow) = (81)° ([mﬂ] - i”;]—) @)

(check).
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Example. For the 96 shots in the example, §10.5, the computa-
tions run as follows, At = 10,

Azimuth Deviation [eighit Theviation
A T A R T T e v agy el
_ S _— L
=30 0 -3 9 0 o ~60 0 — 3 0 0
-20, 2 -2 4 -1 g =503 -5 23 —15 73
=100 9 -1 1 —g g =40 5 =1 06 —28, 80
—] ‘ =30 13 -3 9 ’4{23\117
0.2 0 @ 0 0 —20 0 18 2 4N T2
—10 21 1 Y31 m
1603 1 1 30 3 | : )
20021 2 ¢ 42 g4 021 @0 ¢ 0
301 5 3 9 15 43 SERNPA N
0° 1 4 16 4 1¢ 107 Jo\N"1 1 10 10
0. 0 5 25 0 o 20 N 2 4 10 20
3N 3 0 0 0
S R I A
96 78 192 ; K —111 35
L. - AN
« \J
tU = . .::;:; ) lD —_ 0
'
[nr] = 78 N\ [7r] = —111
N
[nr?] = 192 O [nr? = 395
Ko :
8 111°
[o0] = 100 (192 — ——) = = 5 — -—) =
0 o6 [vr] = 10013095 96
’ N 12,863 26,666
X{\"
. 8O3 1078 19111
& ')\Bl_i_ T = T o= — =
S 6 P=0 g
NN 8.125(8.278) —11.562(—11.969)
a\"4
3 —
™ s = 412863 Po666
85 8= 95
11.636(11.393) 16.754(16.992)
~— = 1188 s
VO —== = 1.710
V56 V96
~— = 0.844 s
100 —=—: = 1.215
V190 V190
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Result:
Azimuth deviation
g =%=81cm with standard error 1.2 cm
¢~ s =116 cm with standard error 0.8 em.

Height deviation
p == —11.6 cm with standard error 1.7 cm

&= § = 1688 cm with standard error 1.2 ¢m, o X\

N
For comparison we have for Z and ¢ also caleulated the exact valugd {¥be
numbers in parenthesis) from (11.7.3) and (11.7.4). It will(Be*seen
that the errors introduced by the grouping are small com j'.“ed' to the
statistical fluctuations estimated in the standard errors./»By ‘calculat-
ing the expecled theoretical distributions in the expspple, §10.5, we
have used the exact values, but the approximatpvilues would give
exactly the same graphs. N
*§11.13. The correlation coeflicient, {J¥ we have a simul-
tancous measurement of two not necessarly independent physical
quantities, we base the theory of errors;};ﬂﬁhe two-dimensional normal
distribution (cf. §7.6), in which we sligﬂl‘now write z for £ and y for .
Applying the method of maximugh likelihood to a sample consisting
of n pairs of measurements, (&g, W)y 0ty (&ny Ya), We again qbtam
s estimates of pa, gy, o apd\}y, again substituting » — 1 for # in the
estimates of the dispersioi{év’:

QO i I
be S0 m = @
0 [
‘“ (V48] o Uyl
,&"w ~s oy SNy @
\m\‘:\ ‘ Uy = 2y — &, Vy = Wi — g
For fle correlation coefficient we find
U (G )[R 1) 3)
(n — 1)sz8, NN

g standard crrors. How-

Exercise. Vorify (1)-(3), and find the corzespondin ¢ number,

ever, Tor p the estimate # is not normally distributed unless 7 is a very larg ;
%0 we should he careful when applying its standard error as if r werc normat.
[040,] we have the following

For the numerical computation of
lac for [vv]:

formulae corresponding to the previous formu
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[ 0] [v r.r(]]

sty = [02%,°] — I {4)
[zl
[v.2,] = [ay] — Tj (5)
| |7 ]ln,r,
[r2,] = 42, AL ([nwi'zr.y] - = 1—{ '—J (6)
(check). Here sto = &y — x{), ?"yi{} =¥ — :ff“, by — 12 = Tz . %

O = r, Ay, nyy = Zﬂz‘-w, and n,, = E Ty With (6) l'qjefring toa

7 7 .
two dimensional grouping (cf. §10.5); we divide a sgi%ﬁtble interval
on the z-axis info m.(<n), not necessarily equal, *iz.i{ibinf;ervals Ay,
and one on the y-axis into my( <), not necessarily dafual, subintervals
Aty In the zy-plane we thus obtain My r}aetang]cs, the middle
points of which we denote by (e, ty,). Tox ach rectangle we count
the number of measurements, .., for sfhich the results lie in the

rectangle QO
Y

Aty A, N AL, Al -
by — o <e =i+ 5’ {:.’{:‘tw — 2: <y =iyt ? (7)

Ly

we have the

H

Example. For the 96 shqﬁ’é'bf the example, §10.5
following values of Rowit IN
radrimuth devistion o

| ~30 %C20 -10 | o] 10 20 30 40 50 | Totalin,
—60 00 0 afoel o 0 ¢ o o 0
—50 (>0 0 0 1 0 2 0 0 0 3
S -0 O 0 1 4H1l 1 2 9 0 0 5
£ -zl 0 1 118 5 2 1 0 0 13
2 0 1 3| 7] 3 2 3 0 18
| a870 6 0 21
R 2 | 6] 10 3 0 0 0 |oB
N/ -
b o 0 0 {8l 6 6 1 1 o0 21
(R L M
10 0 o o | 3| 3 3 1 0 o 10
20 0 g 171 2 1 0 g 0 5
30 0 0 0 0 0 0 0 0 0 0
SR R
Total; n, 0 2 9 28| a0 21 5 1 o 56
i

_ Such & table is called o correlation table, The two distributii}'ns
in the margin are just the empirical marginal distributions {givitg
the frequencies of one variable independent of the values of the other;
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of. §4.13). We see that they agree with the two distributions of the
example, §11.12, In order to compute [ngr.r,] we first compute

Z Ny Ty = [yl fOr each fized o, multiply theresult by ry,, and sum.

)
The computations then run as follows, using the results of the example,

§11.12:

T {ﬁxi‘vry] [nziys'ry]fz:
o &\
S| o] o R
~2 —3 16 e N’
_1 __13 13 ..\\ &
1] =33 0 N Nt/
1 -28 | —28 S
o | —28 | &2 \§
3 —6 —13 Y
4 0 0 .
5 0 \J
2 ’:(:>
-111 Qi—‘;%
[Rayrary] = —75 “
(8%, | 78-111
[ramy] = 1QO(:75 + 896 ) = 1518.7
A
(& 15187
= ——— = 0.0820.

r —_— .
¢y V12863 - 26666

Y, ) :
We note thaf ¥he sum of the figures in the second column gives us a
check since~ &
\J

\...
, :g\n“"yﬂ'rﬂi = z(z nxf:w) Tui = an?’ys = [n,r,] = —111

Ny A 7
TNMW ) ]
\ng the example, §11.12. In practice the whole computation is, of
course, carried ou$ in one single scheme, the schemes of the example,
fiL12, being added to those of this example.

$1L.14. In some statistical analyses the prob
the true value of a normally distributed variable is 0.
whether the estimate, Z, of u is compatible with the hypothesis » =
we form the new random variable '

lem is o decide whether
In order to test
0,

ad )
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which, as shown in Exercise 2, §7.9, has the {-distribution (7.9.3) with
f=n—1 TFrom Table ITI we can then test whether the value of
t observed lies within reasonable limits. In practice the 5% limit i
usually chosen, which means that 7 is considered as deviating signif-
ieantly from 0, i.e., more than can bhe expected from ihe statistical
fluctuations, if the corresponding ¢-value lies outside the interval for
which P(Jt| = &) = 5%,

Example. Considering the 96 shots in the example, § 10.5, wea may
thus ask whether the deviations of the striking points from the aim
point (0, 0) are so large as to indieate systematic errors, infhe aim
mechanism of the machine gun, or whether they are only @t must be
expected from the statistical Auctuations., Iirom the jslues given in
the example, §10.5, we get for the azimuth deviat@on\\ty = 8.125/1.188
= 6.84, and for the height deviation ¢, = —1W862/1.710 = —6.76.
Since f = 96 — 1 = 95 it follows from TableN¥ thai these t-values
are falling far outside the 5% limit of 1.986.) IPurihermore, for this
value of f, ¢ is very neurly normally dist;;if;i.lt.ed; i.e., Table I may be
applied showing that the t-values formaddre even outside the P = 107°
limit. Consequently the dcviat-iogﬁ e highly significant, and thus
the series of shots mentioned rélyuires a closer investigation of the
causes of the error, N

§11.15. In other statisticdﬁ~&naﬂyses the eonditiong of the experi-
ments arc varied in ordex’to investigate whether or not certain factors
have any influence, gf; 9.5).  Performing respectively ny and #y
equally accurate méheurements before and after the condilions are
varied we obtaint®o estimates, #; and Z,, of the true value. The
problem is then®fo test whether or not the estimates are compatible
with the hypathesis that the true value is the same, i.e., whether or not
their diffézence is larger than can be expected from the statistical
ﬂll(:tl}%{ﬁ)ns‘ To test this we form the random variable

4 ..\: 3

e A\ W

O

PR Bl s = F181% + fase® )
181 T /a8

sﬁzz J1i 4+ f2
n

1 ta
fl:nl_l; o =mng— 1,

whick, as shown in Exercise 3, §7.9, has the t-distribution (7.9.3) with
F=1i+ 7 (Wenote that as shown in §11.10 5 is the best cetimate
of ¢ we can obtain from the combined n; 4 7s meastirements.) By
means of Table ITI we can then test whether the value of ¢ found lies
within reasonable limits, In practice it is customary to cheose the
5% limit and consider the difference betweon # and Z» as significant
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if the corrcgponding ¢-value lics outside these limits, Tn this case we
do not consider £, and Z, as estimates of the same true value, or, in
other words, the larger the value of § the more the factor in question has
hod @ significant effect.

Example. In the measurement of some spectral lines the problem
is whether or not we are observing a new line. FEach measurement
iz repeated 4 times. In the first set the following values have been

Tound: "
50339 50340 50337 and 50.339, RN\
whence O\
1 = 50.33875 ~ 50.330  and s = 0.00126 ~ 0,001}

T

50.339 50.330 50333 and 50.383)"

in the second set the values

whence
s \J
T = 50.33375 ~ 50.334 and sg 5&6.00378 ~ (0,004,

\S
- eyl e _0.00500 o
Thus we got s = \/:6 _:'0‘(.)‘0281 and ¢ = oo V2

2,52, Hince f=4+4-2=% .i;ttjs geen from Table IIT that the
value of ¢ falls slightly outside th'é"5% limit, 2.447, but far within the
1% limit, 3.707. Thus 7. ahd Iz do differ significantly, and conse-
quently we must regard th;é?as belonging to different spectral Imes,
although we cannot asc':i'ihe’grca'b certainty to this conclusion.
§11.16. A too-large walue of ¢ in the preceding topic may also be
attributable to tBeGhct that the two sets of measurements are %ol
equally accurstéhive., they belong to two different values of o.  How-
ever, this v“ be tested separately. In many staiistical analyses 1t is
of importahide to test whether or not the difference between twlo e&::tl-
mates of found by two different methodg of measurement, is sig-
nificant, ie., larger than can be expected from the statistical fluetua-
tiolsy' in other words, whether or not the (wo measurements are equally
accurate, ie., have the same parameter o, Let 81 and ss be the two

estimates of o based on m; and ns messurements Tespoctively. We
then form the new random variable
2
5
w? = (__1) ) 81 Z S @
59

which, as shown in §7.11, has the distribution (7.11.4) with /1 =
it =1,fy = ny — 1. From Table VI we can then test Whet-her’or nEL
the value of 1 obscrved lies within reasonable limits. In practice the
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59 limit is chosen, P(w® = w?) = 5%, and, if w” is larger than this
limit, the difference between sy and s: is considered significant, ie.,
the two methods of measurements are not considered cqually aceurate.

Example 1. In the measurement of speciral lines mentioned in the
example, §11.15, we found s; = 0.00126 and ¢ = 0.008378, ie,

0.00378\?
2 = " ) . 63 = fo =4 — 1 = -
v (0.00126) 9.00. Since f1 = [ 3 we see from

Table V that this value falls just within the 5% limit ©.28. Thus the
difference between s; and s3 is not significant, and consequentlythere
is no reagon for suspecting that the two sets of measurcm(;,riﬁs 4T 1o
equally aceurate. O

Example 2. Far the 96 shots of the example, § 105,5ve found &, =
16.992 and s; = 11.393, whence w? = (16.992/11.3%&*——‘ 2.23. From
Table V we see that forf; = fo = 96 — 1 = 95 jc-}:@,\ 5% limit is smaller
than 1.70. Thus the difference is significand\afid the dispersion for
the azimuth deviation and for the height dexiation cannot be regarded
as being equal. \.: v

§11.17. In the practical applicationvof the theory of errors it is
important that measurements ent;uiﬁbered with coarse errors be
rejected since even g singre caarse'::er-fo-r can completely folsify the resull
of a series of measurements, o,‘ifowever, having based the theory of
errors on the normal distzibution which in principle alfows the oceur-
rence of arbitrarily large(@\rrn)rs, although with negligible probabilities
(cf, Table IT), the pw{)le’m 15 how to distinguish belween eourse errors
and particularly large random errors. The only cerfain method 05 10
reject during thegeasurements themselves suspicious measurements, when
cortain circun@sﬁnccs seem to indicate that the conditions of the
Obsel'vatislﬁ,&ﬁa-ve not been constant (vibrations, sudden changes of
temperabure, and so forth). In such cases a closer investigation Is
necesgsf:}\’y to decide whether or not the measurement has to be rejected.
l—]l.mi.g*ever, in practice such an investigation can be difficult or even
unPossible, and, since, as a rule, a coarse error is conspicuous by its
tonsiderable deviation from the other measurements, # is lempiing
to let the magnitude of the error be the sole deciding criterion for the
refection of coarse errors, especially when the measurements are per
formed by less skilled ohservers.

In the course of time many different rules for rejecting coarse errors
have been proposed, espocially in ordnance! If the parameters 4 and

' We then spoak of rules for rejecting stragglers, German, Ausrejsserregeln.
For a more detailed discussion of such rules sce, e.g., Arley, Donske Vid. Selsk

Mat~fys. Medd., Vol. XVIII, No. 3, 1940, Chapter IV; or Cranz, Lekrbuch 97
Ballistik, Bd. I, p. 420 .




§11.18 173

s were known we could take a suitable tolerance limit, e.g., the 0.1%
limits o = 3.29¢. However, as a rule, only the estimates # and g are
available, and thus one natural procedure among others is to consider
the relative deviations

X — X
ri = —/——1 (1)
n—1
5
T .
N\

of which, as shown in §7.10, each has as marginal distribution® tEe
rdigtribution (7.10.2) with f = — 2. Tor large values ofn this
distribution is practically normal, so the r-limits will app;‘@z;clf those
of the normal distribution. By means of Table IV we can'test whether
or not the relative deviations lic within reasonable liﬁiits. Since the
rejection of measurements for which the r-value lieg’ outside certain
limits means in reality that a distribution otherythan the normal is
taken ag the basis of the theory of errors, sugh dimits must correspond
to a very small probability in order thatfﬁh@‘:chwge be so srall as to
be negligible. As a suifable Imit we méy choose the 0.1% limit,
P (H zr) =01%, and consequently ‘reject & measurement if its
r~value is oulside these Hmits. R :l N

Example. For the 10 M‘ztéﬁfement-s of the example, §11.11, we
get the 10 relative deviations

¢ .
N0, 562 0.295
AN 1.100 —0.241
O 1815 —0.778
\ 0.027 0.832
R, 1.368 —1.851.

b’tince f= m\~— 2 = 8, it is seen from Table 1V that these r-values all
lie “"itbih“i\-he 0.1 limit, 2.616, and even within the 5% limit, 1.895.
Thusfthﬂi'e is not the slightest reason for guspecting thatb any of these
measirements is encumbered with coarse errors.

We emphusize that any schematic rule for rejecting suspected coarse
errors must be applied with a certain caution, especially for small
values of 7.

9, 21,789, 21,789

Excreise. Show that for the 4 measwrements 21,790, 21,78 3
3. In

th? first relative deviation is equal to the maximum value of v, viz.,
Spite of this fact no one would of course reject the first megsurement.

Iysis is the investiga-
tain phenomena (cf.
tion function of

. “$11L.18. An important form of staiistical ana
100 of dependence or correlation hetween certal
39.5). If it may be assumed that the joint distribu
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x and ¥ is normal, the problem is to test the hypothesis that the true
correlation coefficient plx, ¥} 13 zero. “To test this we caleulate the
hest eslimate of p, the empirical correlation coellicient rz, given in
{(11.13.3), and the ncw random variable

r = \'n__]-“r.::y- [1)

Tt may be shown that r has for p = 0 the r-distribution (7.10.2) with
f=mn— 21 By means of Table IV we may test whether or nr\t:flies
within reasonable limits. Taking as such limits the 5%\ limits,
P 1‘| = r) = 5%, this means that we conwider thal i.hi}i«ﬁ’aﬂlﬁe of r
observed deviates significantly from 0 if it falls outside)these limits
or, in other words, that the hypothesis p = 0 is inconfpatible with the
gample measured, 1.c., that there ig a correlation b{it.’wecn x and y.

X

Example. For the 96 shots of the example, §10.5, we have in the
example, §11.13, found the estimate » = 0820 for the correlation
coeflicient between the azimuth and height"dm-'iai,ion of the machine
gun. Thus r = v/95-0.0820 = 0.799) Since f = 96 — 2 = 94, it is
seen Trom Table IV that the ?'-va'lgy‘hcr(: is far inside the 5% limit of
1.956.  Furthermore, since the x3fistribution for such large values of f
is very nearly normal, TableSM may be applied, showing that this
r-value falls even within th 40% limit of 0.8416. Thus r does not
deviate gignificantly from, 0, and consequently there is no correlation
between the azimufh\snd height deviation for the machine gun
investigated. O\

§11.19. Weyemphasize that the common characteristic features of
the methodg.dederibed in §11.14-§ 11.18 are, first, that the methods
do not p esuppose any knowledge of the truc valucs of the parameters
which i\practice are known only rarely; second, that they take into
accouns ‘the statistical Auctuations which are due to the fact that
pl‘\ag\tice wemust often be content with small samples, consisting of only

“a small number of observations; and third, that they give us complete
control of the certainty of our conclusions. However, it should als0
be stressed that the various tests discussed allow us to draw only negalize
conclugions, Thus if the hypothesis is that a true vulue is zero al
the observations give a é-value which has only a small probability,
then 1t is obvious that the hypothesis does not agree very well with
the observations. But if we consider two hypotheses regarding the
true values, u1 and uy, and the observations give t-values for these

*8ee, e.g., Cramér, Mathematical Methods of Statistics, §29.7. A table givios

direetly the distribution of Fzy is found in Fisher and Yales, Statistical Tobles,
Table VI, !
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two hypotheses within say the 909, and the 70% limits respectively,
we cannot conclude that uy is & better hypothesis than u, but only
that they are both compatible with the observations. Furthermore,
it should alzo be stressed again thuat it is quite arbitrary when we choose
the 5%% level for disearding unlikely hypotheses. As discussed in
§0.3, it iz always, not only here, a question of personal choice where to
make the distinction betiveen agreement and disagreement of theory
and ohservations. The only justification for the value 5% is that in
practice thiz has turned out to be a suitable value: on the one hand It
is sufliciently large for actually discarding “false” hypotheses, on the\
other it is sufficiently small for dizcarding only a few “true” hypothésgs
giving rise in & random way to large deviations, O

If, however, the tables used in the various tests are not atiour dis-
posal, the tesls may be performed roughly by neglec tinitljs\stittist-ical
fluctuations of 8. Thus if we want to find out whether or not two
averages agree we can do it roughly by computing bhe dispersion of
the diference and testing the significance of tht;.dﬁ‘férence by means of
the tolerance limits of the normal distriblgoiqn." If the dilference is
many times as large as its dispersion it is\certainly significant, but,
if it is of the game order of magnitude and the number of observations
i small, as, e.g., in the example, §»1'{_'I5, certain conclusions can be
drawn only bv means of the t-tab*lé,”éince in such cascs the statistical
fluctuations of s cannot be neglected.

§11.20. For the practicabapplications of the theory of errors the
question of how many obgérvations should be made is of great import-
ance. Of course this depends on the circumstances in question, espe-
cially on the knowledgs we may have in advance as to the statistical
fuctuations expedtetl. In accuraie measurements we shoufd‘dema.nd
that the dispe &'E’g;quf % be small compared with 7 and that the dispersion
of 3 be small 'o%ﬁibared with s. In gencral, results hased on 10 meagure-
ments ayasgdnsidered reliable, and more t
seldora{Uyed for ceonomical reasons, as regards

Smge the dispersion of & tends to 0 when the
%, i3 inereased indofinitely it might in prineip X
to increase the aceuracy in the determination of the true value mdf—;ﬁ—
nitely by increasing the number of meagurements, mtk‘ter. than using
more precise measuring instruments.  However, this belief is erroneous

although it is often met.

han 20 meagurements are
both time and expenses.
number of observations,
le be thought possible

Example. In the measurement of the distance befween two

Marks on a steel rod, mentioned m §11.3, We get exactly Fheldispgr.
sion 0 for Z, but hardly anyone would conclude from this tlit E}E;‘
true length is exactly 2 m. If we measured next the same lenghh wl
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& tule with divisions of only centimeters the dispersion of Z might for s
sufficiently large number of measurements be of the order of magnitude
of 107 m. However, hardly anyone would expect the length thuy
obtained to agree with the value 2.0078 m found by measuring the
length by meang of & much finer measuring instrument,

It should be remembered, first, that Z and s are only esfimates of the
parameters in the theoretical distribution by means of which we
describe our observations, and, although the dispersions of thegaesti-
mates tend to 0 for #— o, g itsclf will not tend to 0 buj cﬁm-’erge
in probability to a constant, o, different from 0. Second, {fvhould be
remembered that it is quite arbitrary that we define the\true value as
heing exactly the mean value, g, of our distributip{‘function. Any
value, say within ;o & o, might with equal validitybéralied the “true”
value. Third, it should be remembered that feomt this definition the
true value depends also on the method of measirement. Thus in the
example we are dealing with threc differe,n}\zﬁetlmds of measurement;
Le., we have three differcnt random variables cach with a distribution
function of its own. Finally we mut) femember that using precisely
the arithmetic average as the bgs’t ‘estimate of the purameter p is
founded upon the hypothesisajcfia;ﬁ the normal distribulion may be
taken as the foundation of thevtheory of errors. Dut this hypothesis
can be verifled only to afertain degree (ef. the next topic) since any
empirically found distyibution is discontinuous and, therefore, can be
described only to aldertain approximation by means of & continuous
or, in particulara, normal distribution when the variations in the
va}ues mesasuteld’ate large compared to the smallest unit of the meas-
uring mstrument.

For all ghése reasons 4t is, in general, meaningless to wrile the estimaies
% and sia“ﬁwre than one place in addition to the number of places in the
sepagdie measurements,

LOIL.2L. In this topic we shall show how in practice one may test

N the fundamental hypothosis of the theory of errors, i.e., that directly

measured quantities may be satisfactorily described by means of the
normal distribution, ’

The simplest procedure is to form the histogram and compar® it

with the normal probability density 1 v . by inserting ¥ for #
a T

and ¢ for o and computing the density by means of Table I. In the

example, §10.5, we have given an example of this procedure.
Another, and hetter, procedure is to form the sum polygon and t0

— ‘u), inserting

28

compare it with the normal digtribution function ¥ (x
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Tz, 19,
§10.6, we have demonstrated this

Zfor pand sfore. In the example,
Procedure, ’

A still better procedure is to use the prohit dia-gr::lm ?Jethod (_ils—
Sussed in §10.7, whereby the graph of the normal distribution funetion
Is transformed into & straight line. In Txample 1, §10.7, we have
8iven an example of this procedure.
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As a rule, in practice we have only small samples consisting of a
small number of measurements, In such cases the methods mentioned
fail since these methods are based on a large number of observations,
However, it often happens that we have a lurge mmber of small
samples which belong Lo dillerent values of both x and o but in which
the quantities measured and the methods of measurement applied are
of the same nature, so that the distribution functions may safely be
assumed to be of the same type, viz., by hypothesis the normal
We can then form all the relative errors (11.17.1) and compare their
distribution with the theoretical r-distribution given in (7.10:2) and
tabulated in Table IV, O

EN)

Example 1, In Fig. 19 is shown the sum polygén‘f 400F(ty =
N(t), for 400 relative errors computed from 100 ;"ﬁ{ﬁinlcs cuch con-
sisting of 4 measurements of spectral lines.!  1'or Cémparison we have
also plotted the corresponding theoreiical curkdy, 100 (¢), which from
(7.10.2) for f =4 — 2 = 2 reduces to a &j;}:a.ight line between the
points (—\/?;, 0) and (\/3, 400}, which’niegns that the relative errors
are for f = 2 uniformly distributm:l,;t\ahc:h value between —3/3 and
V3 being equally probable. Tt i sden that the agreement 18 very
good, although in this caze the&}Iﬁations are so small that they are
not large compared to the sm.ailttst unit, a condition usually necessary
in approximating an empirical distribution by a continuous distribu-
tion funetion. R

1t should be remarked’that strictly speaking we should consider the
distributions of the rélative errors, Nos. 1, 2, 3, and 1, scparately, sinee
otherwise they agaaot independent (this is done in Arley!). However,
when the nunthgt of samples is large this dependency may be neglected
as proved J:J;}’Irley,l

Example 2. Finally we can also form the relative errors of &
anggt%fsample and compare their sum polygon with the normalized,
noemal distribution function ¥(¢). However, since the r-distribution

Q‘? only approximately normal for large values of n and since the rels

Ive errors within a single sample are dependent, such a comparison

can give only a rough test of whether or not the quantity considered
is normally distributed! In Fig. 20 we have drawn the sum polygon
of the 10 measurements of the example, §11.11, and for comparison
¥(#). It will be seen that the agrecment is not bad.

§11.22. So far we have considerad only dircet measurements; bub

a3 mentioned in §11.5 most, physical measurcments are indirect 1.6
the results are obtained only indirectly from the ohservations, the

! This example Is taken from Arlev. Dan ke Vi b Matfys. Medds Vol
XVIII, No. 3, 1940. ev, Danske Vid. Selsk, Mal-fy
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quantity # under consideration being a function of other quantities
%1, %32 * * * , %, which are measured directly. Assuming ey, - ¢ -,
%, to be independent and the conditions mentioned in §6.5 to be ful-
filled the mean and the dispersion of z are to a good approximation
gn«en by (6.5.9) and (6.5 1(]) Inserting herein estimates py = %y,

, By = E,, 01 = 81, © 0, = 8, We obtain
E‘iﬁ{z} = Z N_f(fl; Ty .'3-5,.) (1)
af\? af\? .
20wt mm o2 e [ 2 RN 2 .
st = s (am]) s + +((m) S \@
N\
in which the partial derivatives have to be taken in thezip",@inf {(Z1,

)

~
N

1
-2 -1 \\ 0 1 2
¢ '\i

\ \\ Fic. 20.
In many case‘@'ﬁccurring ospecially in physics and technology, % 38

i So—c-alled.lqt(}\f;t’ﬁ{éhmic funection, ie.,
3 3
.\\w & I, (3)

R\ Z o= ¢ x" %

“hﬂl‘e?tl, -+« k, are positive or negative constants and ¢ is alse &
@%anb From (6.5.9) and (6.5.10) we then find

a*{z} ~ |z (klﬁ (;fj)z B (i—)z) (4)

which may also be written

2 Ty 2
(E) Nklﬁ (ﬂ) 4o + k’z (;;;) ) (5)

Mz M1

Exercise. Verify these formulae. Also, if kl';"’kz;;w ’ a

show that (5) may be approximated by
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& k12+---+kﬁf)- ®
¥z '\/ ( i o )

This formula is frequently used, espeeially by engineers; it always gives o value
smaller than (5) except where the single eontributions are exactly equal {cheek),
Therefore, since (5) is just as casy to apply, (5) should always be used.

dz 1_
»

Example 1. Tet us consider the measurement of specific resistance
2

4
and the length ! have been measured with the relative dispefsions 2%,
3%, and 39 respeclively. From (5) we find ~

'A% AY 7a\’ 7\ * N\ ]
()~ ) +
Mo tr fhd m) L&

le., '\

v

Il

p » and let us assume that the total resistance R, the diameerd,
N\

g )
—FN’?%' ’::\\./
Hp N g

N
(From (6) we would have found o,/ > 11/4/3% = 6%.)

Formula (5) is often used fm;;ﬁpfei‘nning the measurement. Thus if
we demand that the relative dispersion of » be less than a given value
and if, furthermore, we dem#nd that this tolerance be uniformly dis-
tributed, i.e., that th(-;' '*‘eg\)arate measurements shall contribute the
same amount to the selitive dispersion of z, we ean find the relative
dispersions with which we Lave to perform the dircct measurements
of 21, -+ w0

N/ :
Examplf‘.\&: Thus, if in Example 1 we demand that the relative
dispersionof’p be at most 19, we find

“".{\ Ur 2 . Fr
R\ o <2-001% e, — < 0.6%
mm\J MR
\} Cl'd 2
4 (;d) <3-001% ie, X <03%
Iy
L£F) z
(«) <34-001% de, 2 <0.69%.
i 77

Tt S.hmﬂd be remarked that in practice this rule of the uniform _dis-
tribution of the tolerance need not always be appropriate to use, s
we have to plan our measurements with due regard to our knowledge

of the possibility of making the dispersions of the various direct meas
urements staall.



12.

APPLICATION OF THE THEORY OF
PROBABILITY TO THE THEORY
OF ADJUSTMENT

N\

§12.1. In the theory of errors, discussed in Chapter 11, ¥ have
considered the simple case of # independent measurements,of one and
the same physical quantity. In the theory of adjustpgt;n‘ﬁi We con-
sider the more general problem of # independent norp@lljﬁdistﬂbuted
measurements of different quantities which are not{fre¢ but which, as
we know beforchand, are subjected to certain seladions, Thus i in 2
problem of surveying we consider three point® 4, B, and € marked
out in the field, and if we measurc the thfee angles of the triangle
ABC, their sum must be equal to 18(}‘.‘\.‘ Now, as we have discussed
in §11.3, the result of any physical measurement is a random variable,
and consequently the sum mentiq;{ed’ﬁvﬂl in general be found to deviate

somewhat from 180°. e

Let us congider the geneljal'b;iée in which we have performed 7 inde-
pendent measurements, bk{é Yesults of which we shall denlote by, ~
L, of n physical quant@e;q, i, - -+, L., the true values, 1.8, the mean

LA

values, of which, Xy, N -, Ay, satisfy r <% equations,?
Fj()\iy"ﬁ“' © ) =0, i=1 2, -, (1}

called the fagidamental equations. If for Ay, =« ; M We insert
the obsefvad values, Iy, « * * , ln, these equations will, in general, n(.)t
be satisfied. It is the purpose of the theory of adjustment 5o obtain
fro:n(:{ﬁe mensured values the best estimates, {1, = * * s I, of the

{?*%‘ﬂmeters A, * * *, A, which like the Vs also satisfy the funda-

Ty -
ental equations.? We solve this problem by means of the maximum

! Prench, théaric de I'ajustements German, Ausgleichungstheoric. )
he large number of varl-

*Ci. footnote 2, p. . Tn this chapter because of t
ables ocourring it :Vfl)l ’tf 7m0re convenic:rll)t- to denote the mean values by the corre;
Sponding Greek letters and their estimates by the correzponding Roman le,t‘terh
with g bar above, since these estimates will turn out to be simple generalizations
of the arithmetic average values, viz., weighted averago values {of. §6,4).te rorm
“ a?he solution of this problem is denoted by 2 somewh_a,t uifotrt:rgahave o
Mustment,” which may give rise to the misunderstanding tha D, Thus
change” the measured values a little in order to meke them satisty (1).
he term “theory of adjustment,” now commonly used, is unfortunate.

181
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likelihood method (§10.10}. If the dispersion of U, is called o, the
kikelihood funetion (10.10.3} becomes

P(Zl; T, Zﬂ.; R11| Ty hm a1, Ty Un) =
. - ey _ . R
\/21r L2 U <) P 2 L

1y |
(751:) OT ;“—‘ O—?l (l-\l) . 9

where

6 =1l — N =]

H 2.‘ T h n’; is." {3;1

arc called the “true” errors of the system um_.l.@wﬁ i# the Gaussian
symbel for a sum (11.5.2) commaonly used in t.,ln'(%hmrics of errors and
of adjustment. Since in practice the ratiosbetween Lhe ofs are, asa
rule, known, it is convenient to introduee’ 2 positive numbers pr,
* **, pn and a proportionality f::l.(:t()l:\é':flcﬁl‘l{‘.d by

2

2 % } A o 1
Py = paoy” = (WY = puo,” =" (4

The.pa-’s are called the weig.,h‘f;g’ of the n measurements, and the
(arbitrary) prnportionality,faéﬁor ¢ is called the dispersion (or the
Q" 2

mean error of an obsery@tion of unit weight). Since ¢® [[EJ - {%ﬁ]
the wei'ght of an;al(x‘!‘hﬁmetic average of » cqually accurate measire
me{nts 8 n tirpe§ as large as the welght of . single measurement.
Thlﬁ'l fact is‘t\k}g"reason for the notation “weights,” because the arith-
metic average contains all # measurements and has, therefore, the
Same welght as the n measurements together {¢f. Example 1, §12.3).
Furthermore, in practice, this is often how the \\jeiqhts ooeur, sinee each
gu{@tmy y 4 13 measured several timoes, »; :-t.mll_i.he average is then

L. mserted info the equations ag ¥ m b the
\ y Weight n,.

' 4

Introducing the weights into (2)

& directly measured value & Wit

we get
P(er e ’E"";hll e }hmﬂ') =

1y | 1 |
(\/Eg) B - - pa?ep {~ o {pee]:[. (8)

From (10..10.5) the best estimates I, - - L of Ny, + -, haBIC the
'Values thlch when inserted in (5) maximize P for fixed values of hy
» tn and at the same time satisfy the fundamental equationd 1"
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Now, since My, * * -, Ap oceur only through [pee] this is equivalent to
the condition that [pee] be a minimum. The errors

Ui:f"uzii ’i‘:=1,2,"‘,?’1 (6)

which minimizc |pee] are called the best corrections of the system,’
and we have

[pee] = pr(ly — )2+ - - - + Pulls — 1)? = minimum,  (7)

where [puv] 15 called the weighted square error sum. This print‘igie
is called the method of least squares, being a generalization of
(11.5.7). We stress that in (7) Iy, * = =, ln, 21, * * * 4 Pa 828 Epown
quantitics and Iy, - - -, I, arc the unknowns. A

§12.2. Wo distinguish two methods of adjustmeqt,iq&}ustmeﬂt by
elements and adjustment by correlates according tolthe form of the
fundamental equations. \%

In adjustnent by elements® the fundament%gquationﬁ (12.1.1) are
given in parameter form, the true values MGy M being given as
functions of & certain number, m < npof free parameters, &, * ©
£, which determine the system uniquely and which are called its
clements:

N

M= ity G =12, > (D)

Thus, for instance, a plane'\‘triangle is determined by one side and two
angles, or by the threegides, but not by the three angles. In general,
the clements can be Chosen in many difierent ways, and the set of
elements to be prelerred must be decided in each separate case. The
only conditiong“sfe ihat the system is uniquely determined by the
elements and Ahat these are free, subject to no other constrajnts than
FO vary ghlywithin certain intervals, their region of definition. Thus
It & plune trisngle we cannot choose the three angles as elements,
%i“‘?-ei'ﬁfst, the triangle is not uniquely determined by ifs angles anq,
Sebotid, the ungles arc not free variables, being subjeot o the condi-
t6n that their sum is 180°.

If we ure to measure & given system, the problem is to find the best
estimates %, + - - , %y of the true values £, * " *> £n of the m ?le'
ments xi, + + + , w,, L., the values which on the one hand satisfy
the » fundamental equations (1) and on the other minimizé [pro]. Tt

are not the errors, bub the correc-

! We note that vy, + * - ined in (6
e that vy, , ¥, 5 defined m (6}, O thoory of djustment to

imm} (ef. footnote 1, p. 156). Tt is more natural
szlmder the corrections rather than the errors.

Frenel, compensation dobservations indirecte;
Yermittelnder Beobachtungen.

Cerman, Ausgleichung
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is, however, not always adequatie, or even possible, 10 measure the
elements themselves dircctly, and we must therefore measure them
indireetly by measuring other parts of our system, which are all fune-
tions of the elements. Measuring just as many quantities as the sys-
tem has elements we obtaln m equations for defermining the m
unknown elements which are thus determined mathematically, How-
ever, as discussed in §11.5, one measurement of an unknown is not
sufficient. Therefore, to decrease the influence of the statistical
fluetuations and to estimate their magnitude we measure more quanti-
ties than there are unknowns; in the following we shall assume PN
We say that the system iz overdelermined, and thf., ,a,d(lltmnal
measurements are said to be evercomplete. ®)
By adjustment by corrclates! the fundumental equ&tlons (12.1.1)
are given as r < 7 unsolved equations between thedd
R&S
v, - M) =0, §=1,2 - 58 (n>7), @)

Ilaving here n unknowns subjected tog' c%ﬁstmints we can in prin-
ciple arbitrarily choose n — 7 = m freef?\fé, consider these as elements,
and express the n — m = ¢ remaininéd\ s as functions of the first Vs.
Consequently, we can again solve tlig*problem by means of adjustment
by elements, but the idea of tht\ adjustment by correlates is to avoid
solving the equations (2) by .operatlng directly with the unsolved
equations. Conversely we ean in principle eliminate the elements
from (1) thus obtaining $he fundamental equations on the form (2).
Thus adjustment by Sements and adjustment by correlates are only two
different methods far wolving the same problem, giving, of course, the sume
resulis. In practice mixed adjustments may be met in which some of
the fundamendal equations are in parameter form, while others are in
the for (af unsolved cquations between the Ms.  We shall here treat
only the;\mre casies. ?

IH\\SG‘I'LIH"‘ Ly« -, I, given in (12,1.6), for Xy, - -+, hn and
Fn\ By for £y, - - - | &, in the fundamental equations (1) or

\@j we get by adjustment by elements the equations
(3)

2 7

bt =fil#, -, T, i=12 ---,n,
Le., n equations for the n + m unknowns vy, - - - , #, and Z1, * s

Fone
! French, compensation d*observations conditionnelles; German, Aunsglei-

chung bedulgtcr Beobachtungen,

* For a discussion of mixed adjustments we refer to the texthooks in the theory
of adjustment mentioned in the list of references.
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By adjustment by correlates we get the equations
fj(31+3'1,"';zn+vn)=0; j=1,2,"','¥‘, 4

ie., r equations for the n unknowns vy, - * *, #,. In both cases we
get fewer equations than unknowns, Le, n — r = m. The remaining
m equations are given by the condition that [prw] = minimum, as we
shall see shortly.

The equations (3) or (4) are called the equations of condition,
and we shall here assume that they are linear, considering the nona_

lincar case separately in §12.13, A\
L4+v = an+ anZy + aZs + ° 0 7 T+ Gimlm, _ ,Q'.\:‘
O
1 = ]_’ 2, -'\-};. :.n (5)

‘.\\0
@ + ol 4+ vg) + agalls Fwg) + 000 ainlptn) = 0,
421,20, (8)

It is not only inconvenient to write dowit@l these equations but also
diffieult to keep the survey clear in longerealeulations. We therefore
look for o way of writing them in .g&}]éitﬁpler and more concise form.
We have the ideal tool for this pm:p'ose in the matrix symbolism out-
lined in Appendix 2. 2\

LN\
ADJU S@J}I‘\ENT BY ELEMENTS
§12.3. We introdqcﬁ\\ﬁhé matrices

b G ?1 611 @2 "7 Oim
& /\:“" V2 @gy @2z 7" fGom
B &/ . , .
I = ‘J/\' - ) 4 = ,
ﬂl ' " \?’Ll . ’ nm N '
’\. 'Zs; [ drn1 a2z ' o Aam
g ad10 El
dag £2
Ao = <. X =, 1
ni] L oml
&ni Zm
The equations of condition (12.2.5) may then be written
X @)

L=L4+V=a+4X

nl
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Tt is customary to write as an abbreviation
N=L - 4, 3)

nl
and the equations of condition then have the form
V=-N+4-X )

nl

In (4) we have n equations for the n + m unknowns ¥ and X, N and 4
being given quantities. The m remaining cquations we get froﬁ\\he

condition that [pw] = minimum, since a neceszary conrj1t1011 f@r igig
that all the m partial derivatives of [pee] with respect to 'm,\ s En
be zero:

3 o, x\\
frs — lpw] = 2 (}012»1 <9_' 4+ o par, —5) —0 }\

{:“'" 1,2, - ,m (5J
From (4) we see that D

M, ”\\
[ azs] - te. i\e A, ©

and, introducing the weight mati‘;x as the diagonal matrix
&N

0
0
Y 7
4 ® pﬂ
the m equa{t((m\ (5) may he written
QO A*P.V =0, (®)
*E?@i;e 1. Verify this, Also show that if we introduce the m matrices
\/3 [ 381 @1z 3L
221 day Hm
A1 = y Az = . )
nl ni nl
Inl fdnz e
the m equations {8) may be written
tpaw] = lpaw]l = * * + = [pam] = O (10)

Esercise 2. Show that [pee] may also be written

[poo] = ¥F*-P -V, (1)
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Inserting ¥ from (4) into (8] we can eliminate P and obtain equations
containing only X:

A* P+ 4-X = 4*- PN, 12)

As an abbroviation we introduce the matrix

A* P -4 =P8, (13}

mn nn nut mn
which 18 symmetric beeause s &\

N
R = (A‘_:k,P_A)* = 4%, Pr. g¥E =A*-P-A=B;:‘(14)
Thus we finally gei _ . O
B-X=4%*.P-N. £ (15)
O

These m equations for the m unknown ¥'s are called the pormal
equations of the sygtem, \V

Exercise 3. Show that by means of (9) we may Agaite (15) as
[pejamilEs + (pasaslEs + - - ¢+ + [Poitnlim = '11"{]: S i=12-",m (16}
which is the usual form of the normal equatighg'as introduced by Gauss. Some-
times the symhol (yz} is introduced for [pyzl. \

From (15) we see that the mgt].id.d‘ of least squares a-ctu_ally leads
to & unique solution, obtained by solving (15) for X, which is done by
multiplying from the left with B™":

L% ~C-N, (17)
X\ fml mn nl
O ¢c=pBt-ar-P (18)

N .
We have heresassumed that the determinant |B| = 0, because if
|B| = 0 it @oild follow from the theory of linear equations that we
had certdinrelations between the #'s in contradiction to out assumption
th&tuﬁ'ﬁf‘;‘ clements arc free variables. From X given in (17} we may
{E"";ﬂ}’ obtain ¥ from (4) and L from (2):

’ y=(~-E+4:-CN (19)
I = A+ A4-CN. (20)

Exercise 4. Show that for n = m these formulae reduce to
(1)

X=A"'-N, =L and V=0 o
ven in (19) actually minl-

$12.4. We still hav -erify that V gl
We still have to verify that V' & tions and X' the corre-

mizes [pyz]. Let ¥’ be another set of coITee
$ponding set, of elements, i.e., from (12.3.4)

V= —N+4-X. W
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Subtracting (12.3.4) from (1) we get
V—V=d4 (X ~X). @)
Using (12.3.11) we then obtain as a generalization of (11.5.6), since
V= -P)+ 7,
[poW] = V'* PV < V*.P. Y 4+ (J" — Vy* P (V' — V) 4
V-PAd- (X —X)+ (X —X) - a* . P.V =
[pez] + [p(" — DT )

the third and fourth terms being zero owing to (12.3.8). Bii:t“'liere the
last expression is nom-negative and only zero for V{=¥. Thus
[pv'v’] is a minimum for ¥’ = , A\

Exercise. Show that

e} = ¢* + (X - 2)*- B- (=), @
where AN
e
2\
:\\\‘\\a :-2
¢=Vipwl, & ={ > ®
{‘:’“ Em

§$12.5. To find the besb'es:ﬂma.te s of the parameter ¢ we have to
solve the maximum likelfadod equation, P being given in (12.1.5),

s 2\J
3 N\ [peel n o [ped
—InP = N eonet — _peely o omo | [peed
o .a&“‘cunst nlno i) =7, + 3 0,
ie., \O
x'{\"'
\"“3 ¢ g = [P?»'?"]_ (1)

Fgr&%fié Same reasons as those discussed in §11.6-§11.7 it is also con-

\;ﬁgm’.ent to use here another estimate, s, having the same relative dis-
Tston as s; and being also ap asymptotic officient estimate of ¢!

N RN T @

1
R —m no—m

where n — m is the degree of freedom since the n v’s are subjected 0
the m constraints (12.3.8).

*§12.6. The joint distribution of Zy, v+, Znand ¢ = \/[M is
given by the generalization of (7.7.11)
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db = p(E1, -, Em, @) dE1 ¢ - dEndg =
VB [ i -
——— — X ——-X—E)*-B-X—_}d*---d'm,'
{(\/2_”)*“ = X —2)|dz -z

1 q f-1 q2 d
hu—mﬂuw4m(9 ew[‘%JfL f=n-m 1)

Exereise. Verify this. (The proof is analogous to that of (7.7.11).

Introduce into (12.1.5), instead of Iy, * * * , In, the nnew variables 2y, * * * , Zm,

7 g . s N\
g and u; defined by I; = I — uy =12 -, njusc (12.44).) N\

Equation (1) shows that Z, * * *, Z» are independent afyg; that
1, * * + , %m and g are a sct of joint sufficient estimates oldl - ¢, En
and o (cf. §10.11); and that Zy, - = * , & are normily distributed
with the mean values 2 and the moment matrix, \ x\
MO = M(E — EHE — &) }\\f o*B! (2)

(cf. §7.6), i.e., that the necessary and suf’@eién%’condition for#, -+,

En being mutuslly independent is that Rtpe‘al diagonall matrix. Finally
(1) shows that ¢ has the ¢-distribution (7.7.12) with the degree of

freedom f = n — m in agreemeniwith the fact that the n ¢'s are
subject to the m constraints (1‘2:3\.’8)‘ Ag shown in §7.7 we thus have,

since s = ¢/ V¥, N\

N\
AN 2¢*
m‘({b{i\'; 0_2, 02{32} = o (3)
(cf. problem 713, @nd
£ ) 2

Mis) ~ DL =g, o8}~ =)

Y — 7, for
O 2 —m)
A\ f=n-m>L 4)

™
N

N\
o\ ¥/ naem
$12.7. The estimates Z1, * * * » Zn and s are, of course, rand

b - . : i measure-
variables, i.e., subject to statistical fluctuations since n new

- !
ment, r ' ; awhat different estlma’.t o8
: 3, 11: 3 En: Would give s0m timate the magnltﬂde of

", %, ¢. We must, therefore, also essl : : ;
these statistical ﬂuctuatiéma. Thig is done by forming estm;:ff; gf
their dispersions, which we obtain. from the .morment D
B, | &,, given in (12.6.2).

Thus

P | [pm] 19 - ,m (1)
T = VE e~ VB N e T

m

+
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We stress that, in gencral, the Z's are not uncorrclated since B! ig
usually not g diagonal matrix. However, if B~ lig u disngonal matrix
and, therefore, p{%; Z;} = 0 for ¢ # j, Le., the s uncorrclated, B
itself is also a diagonal matrix. As shown by (12.6.1) the 's are then,
furthermore, independent.

Exercise 1. Show that (12.6.2) also follows from {6.4.23), since frow (12.1.5)

MUd = g2p-! 2)
and X is a linear function of L, piven in {(12.3.17). a
Exercise 2. Show that (12.6.2) also [ollows from (10.10.15). \\

Example. [n the theory of adjustment it is customar&::ﬁ@;eall a
set of linear functions y1, * * -, ¥ of the direct observaliongd,, - - -,
I, free funections if the y's are two-hy-fwo 11n(:r11‘}“('\L’i’ég_t(], that is,
pivis yit = Ofor{ # j. From (6.4.23) and (2) We@@"e

M = gPF P NNV (3)

#E N
which shows that the nceessary and sulligiént condiiion for the ¥'s
being free functions is that F- P 1. §* iéa\diagonal matrix. However,
since the I’s arc assumed normally distributed, so are the y's, ie,
(3) shows, furthermore, that the thzlfe’e‘ concepts—mutually independ-
ent, two-by-two uncorrelated, ‘a.fi"ti‘ frec functions—are equivalent for
normelly distributed variables (¢f, Example 2, §7.6).

§12.8. If we haven set\i}functions of X, such as, c.g., L given in
(12.3.2), and we wang{o/calculate the dispersions of the functions
from those of X given in (12.6.2), we must remember that the simple
variance law (6,44 éannot, in general, be applicd but that the gen-
eral variance lagy ~\(6‘-'-1.3) should be used since the #’s arc usually not
uncorrelated., {However, using the matrix symbolizm this is done
automatii@yf Thus if
R\ Z =G, +G X (1

~\D k1 k1 km ml

3
is'Wset of & new random variables, also normally distributed, we have
immediately from (6.4.23) and (12.6.2}

M? = G . B~1. G+, @)
ki
) Exercise. Show that the same result iz obtained if we first express Z as a func-
tion of L by means of (12.3.17) and then use (6.4.23) and (12.7.2).
In particular, since from (12.3.2) G© = 4, (2) gives
MO - aid . B!. A*, (3)

nn
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which in generad will not be a diagonal matrix.  Thus the estimates E
are ueually nof uncorrelated (le., independent). From (3) and
{12.5.2)

S

= VB )0 = VBT [?’”’

i=1,2 " ,n @

Ag a conlrol we may use the relation

: &
Y ot} = me?, <O
=1 \V
a5 proved in problem 70. \\“

Example. An cusily committed error is thab Uf\PUtmng ofli} =
oflsf = rrﬁ\’pz Tlmt this is crroneous may be seen from the fact

o V4

that, from (12.1.4) Z pwo L} = ne?, wl}&ch{ﬂoes not agree with (8).
=1

§12.9. As for the dispersion of s x’qt:‘fé'ﬂ'owb from (12.6.4) that

. ] J,’C'"‘ ~ b , (1)
\/2(31,— m) V2(n—m
Q)

if f=%— mis not t% small otherwise we have io use the exact
formuls, (7.7.19).

Exercise 1. mm j:hat from (10.10.14) the asymptotic dispersion of the raxi-
mum likolihnod aitunqto s1, given in (12.5.1), is giver by

\Q. 2

{
A\ 2l = (2)
:\\\ st =5

™
.‘,

fl‘gm’{ﬁluh {1} also follows.

The final result of the n measurements by, ** " Iy 15 nOW GIVER O3

Estimate of the true value:
§ ~%  with dispersion: o{%} = m >
itz m ®

Estimate of the true value:

Mol with disporsion:  ofk) = VA B AN

with dispersion:
-i:]_,g,"°1n‘ (4')



192 TIEORY OF ADJUSTMENT [Crap. 12

Estimate of the dispersion:

: § i
R with dispersion: o{s} = —r- (5)

V2(n —m)

{The dispersions of the estimates are often ealled their standard or
mean errors.)

Exercise 2. Show that

[por] = N*- PN —N*+ P+ 4+X = [pnn] — [paay|fs — - - - — [pm@ (8)
fpo) = N*P-N —X*.pB-X \” N
ool = [l — 1p11) + 24,% < P+ V., O @®

These expressions mey be used either for the computation oQvav} or for the con-
trol of such a computation.

*Exercise 3. Show that ;\
1 \\
% — & . i ‘ .
——= §=1,2 --.,m and Ry S i=1,2-.-,n
v (B s ' \/{_A‘:\K‘; + A%)is

\\\S @
arc distributed as & { with f = n — m (qf\§7 9). Find the expressions for the

confidence intervals of the pammetor% Ei, S Emy A, s, A (ef §11.9),
N

Examplel. Tet{;, - - %ben not nceessarily equally accurate,
meagurements of one quanﬂty x3 1.c., the number of elements ism =1
and the fundamental calations are

7

i\?\\l":lf!: e =Aﬂ=2‘

In this case we"ixave

.\/ ;
o\sl l
\“ AD - 0’ A = A —]
\’v T nl
"'\jw
N/ !
i 0 0 ]
0 p» 0 1
B =B = ..y L = [p)
mm i1
0 0 - pf\1
1
[p]
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0 0
1 0 p2 0
mn 1w 1P { } =
0 0 Pa
lﬂ) B; + &
Thus we geb {p] [p] [P]\\
E”f=[}'}ﬂ: (’““
B Sy

which is just the weighted arithmetic average, Nexb ' \\ \

gnA:g:\/—[_@ N’
"

A

(11)

1.
1,::\\"
\ W

y (12)

=
7= Nigln &,
A

o T

&
NS

(13)

al'e

f‘l:ﬁnote that .(12’) agrees wih tho result of Exercise 2, §6.4, and
ermore Lhat it showg-that the weight of the average is also in the
gen:eml case equal to the \M of the
wetghts of the separgly, measure-
ments (of. §12.1p CFor p1 = ps
i o2
; o, (the' corresponding
ormula,e‘& '7.3) and (11.7.4).
mExa}siplc 2. . In a field we
bé(:sém the a}1:-1t-udc differences Fre. 21
o yeen 5 points as shown in
altgt 21, where the arrows indicate the
itude. The measured values are, in meters,

directions of the decreases n

i 20.21
I 40.07
i 34.17
L = {lyy = (3584
lg 60.40
Is 5.87

Ly 69.99
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Ags for the weights a closer investigation of the measuring method used
in such a surveying problem shows thaf it is natural to choose them
inversely proportional to the corresponding distances. Assuming
these to be propertional to 1000, 1110, 910, 1250, 1000, 1110, and
1000, we can take ag the weight matrix

19 0 0 00 0
009 0 0 00 0
00 110 00 0o N
P=4<0 0 0 08 0 0 05 ' K
T o0 0 0 10 0 \\
00 0 0 0 09 0 NN
00 0 0 00 1

Choosing as elements the altitude differences 1, 2, 3¢ ?x\nd 4, the funda-

mental equations become )\
A 1 0 o 0) N
Az 0 1 0 &K £
As 00 N !
Ay =<0 0 jéb‘l L
s 1 1.8%0 o ba
] {0 BN 1 o) ‘i
Ay o 1 1
Next we find .i\
2 4o 0 0
15828 —09 o
B— ' ;) =1
105 —09 3 1 |B] = 17.324
P (N 1 18
N
\\ 10.862 —44 ~1.62 0.9
Qg1 1 })—aa 8.8 3.24 —1.8
) 17.324 { —1.62 3.24 828 -—48
~O 09 —~1.8 —46 1218
\/
80.810
101.746
4* PN =
PN = $l0220a(’
08.662
and thug as results
20.260 0.039
~ % - 140.000 0.035

34.185 with dispersions 0:034

35.821 0.041
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20.260 0.039
40,090 0.035
34,185 0.034
A =~ L = {35821} with dispersions {0.041
60.330 0.030
5.905 0.039
70.006 0.040
and
¢ = g = 0.0493 with dispersion (.0201 O
{check all the numerical calculations). A '\

4

*Example 3. In Example 1 we have f=n—~m=7—-4As¥
and £ (5%, 3) = 3.182 from Table III. Thus the 5% cnnﬁdeggé}iinits
are obtained by multiplying the dispersions mentioned by,é'\lS‘Z.

Exercise 4. In practical computations we would in Example\ﬁ ‘choose as ele-
menty the truc corrections rather than the true values of the altitude diffcrences
mumbers 1-4 in order to get smaller numbers in the computations.  Carry through
all the corresponding ealeulations. ¢’ i.\

"N
*§12.10. If we want to test whether o r@é&sﬁrement is encumber_ed
with & coarse error we may caleulate thg@dﬁesponding relative dn.3v1:a~
tion and by means of the r-distribklt;jéﬂ‘ test whether it lies within
reasonable limits (cf. §7.10). ,*.:::"

>3

Excreise 1. Show that the moHth matrix of ¥ is given by

MY = o4, D E) P71+ (4 C— B =0T, M
bris) X \

T being an abbreviation-£drithe complicated matrix given in L.

A S
The relative @(ﬂiiajtions we define by

EPL_ fimm 1,8, @
;= = B H =1, &4 y oy
\/ £ 8 ti  V|[pve]

N . .
and}i::}xziy be shown! that the marginal distribution of each r; is gw.iﬁ
by the r-distribution (7.10.2) with f =n — ™ — 1 In agreement wl
the fact that the ' are subjected to m - 1 constraints.

. 1] Next
Exercige 2. Show that (12.3.8) gives rize to m constraints on the r's.
Bhow that,

t

[pir?] = E;Oifﬁ?‘ig =% - Mn

@

] i=1
H:le e, &Ll%e v hec
Fu i i i ¥ &150 be USed here ﬁO L .

! 1 de 13,{';10]18 ma A i k

the hypothes : orIné.
¥pothesis that the observations are I
ter I1.
18ee Atley, Danske Vid, Selsk., Mat.-fys. Medd., X VI, No. 3, 1840, Chap
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we often have several small samples with different, true values, weights,
and dispersions but with the same degree of frecdom F(ef. §11.21),

ADJUSTMENT BY CORRELATES
§12.11, Introducing the mairices

31 1 2310
Ig Da s
L={) V= (. — ; )
nl nl i1 . ’\\\
Eﬂ Uy Qriy 4 “:j’.
O
@11 a1z I A\
ftal oo EI.‘;” ’x:\\’\mx
A= P (1)
™ \ ¥
O
%yl Opz v ."zg Arn
N
the equations of condition (12.2.6) m\‘::ixbe written
Ay + A+ (B V) = 0. (2)
As an abbreviation it is custqlﬁiéﬁy to put
o+ A4-L = N, (3)
\ rl

Thus (2) assumes the\?é}m, being analogous to (12.3.4),
S, N+4-V =0, )
N/
Here we haye# equations with n > r unknown »’s. Since these v
are no f@é’ variables, being subjected to the r constraints (4), the
nceessary condition that [pre] = minimum is not in this case shat the
parfial ‘derivatives of [pm] with respect to all the o's be zero (which
.would, by the way, lead to ¥ = 0). The condition is that the total
@Herential of [pm] be 0, 1., using (12.3.11),

dipw] = [2podv] = 2V . P. gy = 0, ©)
where we have introduced the matrix
d?)],
d?)z
a0\ (6}

rnl

dr,,
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Differentiating (4} we get
A-dV =0, n

We now eliminate dV between (5) and (7) by means of the method of
Lagrangian multipliers called here the correlates ki, kg, - - - | £,
which form the correlaie matriz

i
k o &\
- R
K={ » RO
rl i“‘: y?
k, p \\“
For arbitrary K we have from (5) and (7) O

VE-P-dV — K*-A-dV = (V* P 28 A)-d¥V =0. (9

@
The mothod introduced by Lagrange now gonsists of trying to fix the,

as yet, arbitrary correlates so that o

prop A =0, 0
ie, N
K= P47 K. (11)

The # equations (11X \&:}Efl the n -+ 7 unknowns, V and K, are called
the correlate equations. Together with the r equations (4} we
now have as mguy,etuations as unknowns.

Example.,ﬁfﬁe n equations (10) may be arrived at ag follows.
Since we hiye » constraints on the z o's we may choosen — 7 of these
as free yribles and then express the other remaining 7 o's as functions
of t}lg}i‘—- r free ones. Introducing this in {pov] and taking ﬁhe partial
d“t}“&tives with respect to the n — 7 free v's would then give us 1:,he

4 7 equations which together with the r equations (4) wou_ld give
Us 7 equations for the unknown o's. These caloulations are avoided by
the method of Lagrange. Let us assume that as the free »’s we have
thosen , - . . , ¥n_r. Wo then first determine the 7 correlates so
that all the eoefficients of the last ¢ differentials in (9) are zero, and
next, singe doy, © - -, dop_p aTE ROW free, (9) demands for t}:fese val}leis
of the correlates that the coefficients of the # — ¥ firgt d;flferentlas
430 be zero. However, we then have in all just the » equations (10)-

¢ r equations

Introducing (11) into (4), ¥ is eliminated and we get th
(12}

N+A.P—-1.A*.K=0.
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As an abbreviation we put, analogously to (12.3,13),

4-P'-gq4* = p, (13)

momn nr rr

which Is symmetric because
BY = (4 P71 Aa%)% = gox . plx, 4« =A4-Pl 4% =B (14
Thus we finally get LN
B-K= N, ‘ O (1)

These r equations for the r unknown Rz are analogous $6412.3.15)
. L 3}
and are ¢alled the normal equations of the system. | W/

7 NG

Exercise 1. Introducing the r matrices analogous to (1‘,255%9) ¢

¢
381 @ X ,”}\ el
@1 222 3 Gz
-} s \/ :
Al - : A2 = N " ~{\ ;’ -41'- = i + {16}
nl nl \\ " rl
N/
Bin 23 ra

show that (15) ean be written in the forms

;g i o ',&:-t;
[‘;T]kl—i‘l:—{f]h-i-”'-«h""—-{lk?.—[—n_f=0, i=12 ---,n
o{\ P (1mn

vn_rhich is the usual forpy ‘be normal equalions as introduced by Guauss. Some-
times the symbol (yz) é\introduccd herc for [y2/p] and (a;m) for n; so that the
normal equations beeome formally identical with those of the adjustment by

elemonts (12.3.16)1\, f

From (’1‘5’2.\‘% see thal the method of least squares combined W_ith
the e ad of Lagra.ngian multipliors leads to a unique solution
Dbtm}f«, rom (15) by multiplication from the left with B~ 1s!

K=-p1'.N (18)

'
o"\§ N/
\E‘énally from (11) we get ¥V

V=Pl gx pi.y (19)
and thus
Leltver_pi.go. g n (20)
Exercise 2, Show that (20) may also he written
E=—P*l-A*-B—l.A0+(E—P—I-A*-B—‘-A)‘L- @)

" Also here the determinant B 5 0 for the same reason as in adjustment by
elements {cf, p. 18%)



§12.12. As discussed in §12.2 adjustment by correlates leads to
exactly the same results as adjustment by elements. Consequently
we need not prove anew that the #’s found in (12.11.19) actually
minimize [prr]. Since the number of elements is m = n — ¢ we also
have from the previous formulae that

Y
r
with the asymptotic dispersion ‘ \\\
8 A
§) T (N2
ofs] Vo i.,\; )
Exereise 1, Sliow that AN .
fpow) = —~N*. K N ? &)
fpee] = K*+ B+ K O )

[pw} = N*+ B« N, RS {8)

. (D
which expressions may be wsed either for the cOl;ﬂQlﬁ;&thB of [pre] or for the
control of such w computation. \S _ ]

Exercise 2. Show that the moment mat-riceé\é\K and L arc given by

M = g2l N (6)
and ” ’..};"

ME = 2Pl Pl AT B 4P, (M

nn ‘.Q\

From (7) we get \\&'

ol = VT — P A B AP o

A/
x\‘zxf(P—l —rlo4r B AP Y \/@:i]' 8
N

O .
i a eo;d;;»}] we may use (12.8.5), which owing te m =n — 7 IOW
bEC-p‘I{}ég}N

N

;mﬂm=m—m? @

ample 2, §12:9, we.hiave

Example- In the problem treated in Ex et

’E-_ree constraints between the true values of the seven measure
VlZ.,

A oAy = As =0

‘4\2 - Ka - 2\5 =0

M- Aar=0,
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i.e.,
11 00 —1 0 0
Ag=0and A =40 1 -1 0 0 -1 ol
87 0 0 1 1 0 0 -1
whence
—0.12
N=A4-L= 0.03]
81 0.02
and . &\
| 0 o S
L1111 i 0 <\
0 —0.90009  0.96000
B=A-Pl A*=4.{ 0 0 95 =
23 —1 0 ,’g’%g\
0 —LIO 0
0 0 N —1
\)

3,@1\1 LT 0
LD 31313 —0.90909
o ( —0.00000  3.1591

for the values of L and P givg{fziﬁ“Emmple 2, §12.9. This gives
x‘,‘
0.37802 —0.14442 —0.04156
Bl = {—@M442 040439  0.11637
(5004156 0.11637  0.35003

and \\
O 0.04903
K=-B%N-= —0.03179], ie.,
O —0.01548
'® 0.050
P\ 0.020
‘3;:\ 0.015
O Vo= pt. 4%, K = {—0019)
—0.050
0.035
0.016
whence finally
20,260
40,090
134185
L = (35821
60.350
5.905

70,006
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in agreement with the results obtained in Example 2, §12.9. (Check
2]l the numerical calculations.)

§12.13. We emphasize that the theory of adjustment here developed
i valid only under the condition that the fundamental equations
(122.1) or (12.2.2) arc actually linear, ie., of the form (12.2.5) or
(12.2.6). However, in practice, we often meet problems in which the
fundamental equations are not born linear. The first problem then
i to transform the fundamental equations into linear form. In most
pages the conditions mentioned in §6.5 are satisfled, le., that the
errors are so stmall that all our functions may to a good approximatie@
be replaced by their corresponding tangent planes, of, in other }\cords
all terms cxcept the linear ones may be negleeted in their Tay,lnr seties
expangions, \

For adjustment by elements we choose as elements thé\true CoTTec-
tions and not the true values (of. Exercise 4, §12.9). \TU that purpose
we first determine approximate values of the bestvestimates of the

olements, 3%, 2% -+ ¢, @’ Next we put \\

5= + Az,  JELEY M 1)

and assume the Ax’s to be so smally ‘nhat their second and higher
powers may be neglected. Th1s L’@Tldltlon will, of course, be fulfilled
for suitably chosen values of 2> QN K x,".  If the Az's found by the
subsequent calculations tur ~eut not to satisfy this LOIldJ tion we mllSt
repeat the easleulations w’rf}x better chosen values of n' o, Em’.
Expanding by means oi\”l“aylor s geries the functions in the equations
of condition and kegbing only the linear terms we get, the linearized
forms R,

S i}
4o = J{m‘l‘i\‘l“ Agg, -, 2’ + ATm) = ft-(a:lﬂ, SRR Y+
N s o,
N AL (__) Ago 4 -
ol _— A [ - X Il
Ay (‘5‘371)0 nt M otnfs
Q” i=1,2""",% @

i which the partial derivatives have to be taken for 4x1
A%n = 0. Introducing the notations

f’i(xlor YTty xmu) = qin = 1’ 2’ P (

8f; i=12""":" (4)

(axf)u'a”’ j=12 " th

. 7 e

e obtain the equations (12.3.2) with A% instead of &. From

s men-
eory it follows that the Aaz’s are normally distributed, but a8

and
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tioned in Exercige 2, §7.5, the &'s will also be normally distributed
under our conditions.

For adjustment by correlates we expand dirvectly the functions in
Taylor's series after the v’s and obtain, neglecting higher powers of
the #'g,

fi(zl! '.-: ﬂ)_]_(af‘) ﬂ1+ o +(%) ?)'.n‘i" T 201
nd 0

t=1,2 -~ ,\{t\ (5)
In order that the #’s be 30 small that their higher powers mw be safely
neglected we must assume that the measurced values algx,er'y close to
the best estimates of their true values as obtained frond, the subsequent
caleulations. This condition is always satisfiedy, {\1 Yiner measure-
ments, but for coarser measurements it may u,r}’\n ¢ll happen that the
v’s obtained do not satisfy the condition. F¥\sGch cases we have to
repeat the caleulations, expanding not fr olgwthe measured values bus
from other more suitable values. N\
Introducing in {5} the notations x\\\\\:

Bl ) =N =12, m, ®
and R

af; “, o= 2.
(6?) \J;’ ; i’ 2, ' @
— s , . . 0 m
. \ J
we obtain the equatlf.th {(12.11.4).

Example.! If)a triangle ABC we have measured thc sides a and
b as well ag the\ahgles y: | and B and found the values Iy = @ = 52.3 om,
lp=b = 33\4' em, I3 =4 =62°2, I, =B =34°7. In thlq case we
have DQ “gOnstraint, m = 1 between the four measurements, # = 4

f(l1“+\v1, bt = (o) sin (4 ey —
'“\
Q° Iy + vs) sin (s + v = 0

(Inserting the numerical values measured we sce that asin B — b 51 A
= 0.22 52 0, 5o that the equation of condition is not satisfied.) Sinee
af . af of
— =gl = = —g “ o g T
ol ' 3l sin I3, L, 1y 180 cos I3,
' A  _ 1y —— cos
aly 180
! ¥or further examples of non-linear problems we refor to the textbooks op the
theory of adjustment given in the list of references.
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(5) becomes

Jieinly —losinly - sin ly -0y — sinly vy —

T T
E{*}lgﬁﬁsla'ﬂ3+®3100824'v4=0

or, inserting the numerical values,

022 + 0.570 — .88vs — 0.2Teg + 0.7504 = 0,

. o &\
Le., \\
Ay =N =022 A4 = {057 —088 027 075}
11 14 o, o
O
Assuming that the angles have been meagured with an accliraty twice
as great as that of the sides we have ::\\
% 0 00 O
0 40 O
F=0 0 1 o
. . . Y
The rest of the caleulation now gIves \
2.28 R\ )
Ploge = 730200 g NP4 =503, B =
—0.27 E <\4 b 5.03
0.757 N
’\\ —0.10 a 52.20 cm
K ) O\ 0.15 . B _)33.55 eml
" = "‘00:1\{??? ¥V = 0-01 P Le., 4 62(_1-21
N —0.03 B 34°.67

;’k'? a contr@\i‘ﬁ}e caleulate 52.20 sin 34°.67 — 33.65 sin 62?’.21 = 0.0_2"‘“0
\w_'ii.hin i-li} acenracy of caleulation. Finally, calculating the disper-
SN get the results

Y 52.20 em g.}g om
T 33.55 em({ . ) . 12 em

A=~L= g2° 91 with dispersions 02-10

34°.67 0°.09

¢ = s = 0.10 with dispersion 0.07.

{Clleck all the numerical calculations.) ' N o

312.14, We shall now conclude our discussion of the & te‘:or};J :
Ajustment by making a remark on when it 15 T00T® coqvm;lin .
e adjustment by elements and when it is more convenient 0

“dustment by corrclates. Since the main Work in solving a problem
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of adjustment consists in the numerieal calculations involved in solving
the normal equations,' that form of adjustment is, as a rule, preferable
which leads to the smallest number of equations. If the number of
constraints between the true values of the quantities observed is r,
adjustment by elements demands the solution of m = n — r equations,
the number of elements being m, while adjustment by correlates
demands the solution of r equations, the number of correlates being 7.
Apart from special cases, the adjustment by clements will thus be
preferable when o — ¢ <7, ie, r > n/2; adjustment by coprelates
when r < n/2, \ N

$12.15. Regression analysis. A most important probfmp, met in
several fields of seicnce, is that of finding by statisticul Methods the
eonnection between two or more variables. Thispiioblem may he
treated by various methods, depending on the natiys of the problem
and the purpose of the analysis,. One of these m(tho('ls is the regression
analysis, & special application of the theory afadjustment.

Let us here consider the case of only M\}J“'val‘iables, x and y. Of
these x is regarded as an independenig\\‘r&i'iéble, ¥ as a dependent vari-
able. x may be either g statistical variable or 1 non-statistical variable
(which, as a rule, only means that the-dispersion of x is negligibly small
for the problem in question), A.f; previously discussed the latier case
iz only a special eage of the of:c;i"fner, the distribution of x then heing
the causal distribution (afs Eiiample 1, §4.3). Woe assume that the
conditional distﬁbution.‘@f‘y is for each value of z normal (or that the
directly given variab@éf’, has been transformed into o new variable,
¥, 30 that this wondition is fulfilled, ef., §10.3). Iurthermore we
assume that theybegression of y on a (cf. §5.5) is a known function of
&, f(z), whioh’ ontains a certain numher of parameters, a1, - * "
o, assumed to enter lincarly in f(z):

N

o

N\
ﬁ(xzj??,\m{yh} = f_m y@(y],z) dy = flz; a1, © * -, @) =
.’\: \ ﬂlfl(‘?—:) + -+ O’mfm(x)‘ (])
3
\Finally We assume that the dispersion of y for fixed z, o[y}, s either
constant or propartional to s known funection of 2, g(x):
okl = [T - @yttt ay = . @

The fupct-ions fl(x), e, fm(;r) and Q’(LE) are elther Obtained from
theoretical arguments or 1aid down as hypotheses arrived at irom &

_ s for the tochnique most suitable for such computations see the books mew
tioned in the list of references.
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consideration of & graph in which corresponding z- and yvalues
are plotted. The problem then is to deduce from the observed
y-values, assumed to be stochastically independent, the best esti-
mates, a1, © * -, &, and s for the parameters o, - - - , Gm, and .
This problem we can at once solve since it obviously may be regarded as q
problem of an adjusiment by elements, the elemenis being the parameters
ag, ***, am Let xy, - - -, @, be n given values of x (which need
not all be different) and g1, » - -, y, the corresponding chserved,
values of ¥. Then we simply have in the formulae of §12.3-§12:0\
to make the following transformation: O\

i“\; Q“X
O, - ey, e vl AR
O
{}\l, T » An} — {7?1: T ¥ ﬂn} ¥ ..;\:'
{31} T, gn} - {?;!17 T, gn} 3
{ } [1 1
S PR SN e
{El: T, Em} A {a:l{‘:‘f; e ] am}
(21, © o, En} oifll 0, Gl @)
{a'lﬂ,- Ty ag \‘_:;‘{Or T :'0}
an - A Frlen) « - Fm(@)
. O . .
SN : :
s 1T lam FELES IR Sonltn)

_ Exumplj&\l. The simplest example of a regression analysis is that
o whichthe regression 7(z) of y on ¥ is a linear function of
& ol

™ a(x) = o + b, @
10 (1) a1 = 0, ay = f, ju(e) = 1, fal) = & T for dmplicity
¢ assume g(z) = 1 we have that the best estimates §1, * © = a ©
" " -, m, are given by the following equations of condition
71 = e+ bo
{5

fn =10 + bza.
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Thus
1 |
Ag=0, A=( -, P=E (6)
ni ) R
1
and
B = A* * P * A = ’?? [J-Il } ,0\
22 [x] [x7] &
2 g o o_a L O [2]
B = 7] = T = onEt] — ntrT o= onfle — )7 e, Qs
B = nfz?] — [+)* = ulz"] — 227 = wlz — B2, ‘ z"? n
1 .'2 — .t .’s.‘;’
B = ‘ . M]‘ o’ 7)
22 al{z — 2)7] | —[x] 7" :\{
Consequently \\3
Lell] = ledfod] (%] — [wy)?
@l o R 5‘1@ -7
=1 =l 4% Y = >§; Vo ¢ MY
b b aleyk > o]yl 5 (ﬂl— -u-_;z_:yjj
@t — 271 [(c — &7
Ny (8)
s;;ii ]
PR
r'“L\ n
Furthermore N\
. s 2] B ] .
‘ S.u o n — 2, Vi = Y ¥ = 1 2: , B ( )
and x;\{“
N
ol g’{ > [iz] 8 bi i fg! 8 -,
3} e [+ =/ g | T ——
QN nl{z — )% : Vi — 27 BT Vo — 4
O (10)
\/Exerciae 1. In practice it may be more convenient to write (4) in the form
n{x) = @ + plx — £, £ = [_;? {4a}

The TFEason for preferring (4a) to (4) is partly that this may simplily the mim\.srica3
caleulations and partly that the estimates a and b then hecome stochastically

independent.  Prove this latter fact by deducing the formulac corresponding 10
(5}-(10j.

Example 2. Experiments show that, if water runs out of & smﬂll
hole in a vessel, the square of the volume run out per second, V, 18 %
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linear functicn of the height, k, of water in the vesscl above the hole,
ie.,

V? = o+ Bh,

in which the letters, as always in physical equations, denote the true
values of the quantities. Thus VZ corresponds to our ¥ and A to .
Strietly speaking both V2 and % are subjected to experimental errors,
but those of 2 may here be regarded as negligibly small, Furthermore
V* may safely be regarded as normally distributed, and with a constant
digpersion. Thus all the conditions of applying a regression analysis,
are fullilled, and from the experimental values given in the first t\>o
columns in Table 1 the caleulations may be carried cut accg};tfiqg to
the formulae of HKxample 1. However, to simplify the numerical
calculations it is more convenient first to make a roug%\t;fguess, e.g.,
T

from a graph, of the values of & and 8, say aq, 8o, i‘e.,".l ting

VP mag o + (Bo+ 890 or V= (apAepoh) = o + Fh.

We now apply our formulae from Example lt's}y = V2 ~ (ag + Boh)
and h = z. With the numerical values -

ap = —0.4320,  Bh* 0.5085
we obtain the values given in colum’ﬁé’ 3-8 of Table 1. We find from
the values of Table 1 and the fgrmiilac of Example 1

al = —{3;007727 ~ —0.0077

b4£.70.001826 ~ 0.0018,

ie., A\
W2 ~ a+a = 04307
N B = By 4 b = 0.5053.

~E
\ ~: . - 2 + .
From thes&ﬁalues we obtain the values for #; vi and v;” given In

columns l‘Z\—Q, and thus
eN®Y -
QY sms- 1%87'2‘; S« 10~ = 0.005992 ~ 0.0060

111.0
o a] 10 0007712 ~ 0.0077
olal \/10 < 67°

7{b} = \;%_;{ — 0.002315 ~ 0.0023

S o — 0.001408 ~ 0.0015.

Y g
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Exercise 2. Let x denote the velocity (in miles per hour) of an automohile
and y ihe corresponding braking length (in feet), i{ylz} depends on x, on the
mean reaction time, &, of the driver, and on the efficiency of the hrakes of the ecar,
Tn the time o the car will run the distance ax.  Furthermore the distanece from the
time the brakes are put on is found experimentally to be proportional to the square
of the velocity, In all we therefore expect the regression of ¥ on & to be given by

7(z) = az 4 gz

Nexi, the main eontribution to the dispersion of ¥ comes from the dispersion ¢ of
the reaction time of the driver about 2. Neglecting the contribution from the
torm Bz® comparced with the contribution from a we must expect that A\

elyfe} = o, A
Tind the best estimates for o, 8, and & [or the data given in Tablo 2. "\ 7

Ne/

TaprE 2

]
# (in miles per hour} ‘ 4 g 1w 12 14 1 J8\20 22 24
L] . 2

y (in feet) I 2 1 18 20 36 4.(&.42 56 66 70
~N
&

For a further discussion of regressionsghalysis as well as its gen-
eralization to more than one independgu}‘é;variable {which only means
substituting for the single variable @an*(1) and (2) several variables
T, + + ¢, xg), we must refer tq:,’"nlié literature given in the list of
references. )

§12.16. The x -test of goodness of fit. Another important
problem often met is that6ftesting the agreement between an observed
and a theoretical distgibution, i.e., of comparing the empirical numbers
n; with the corrcapoﬁding theorctieal numbers »; = ne; (cf. §§10.4-
10.8). Tor eachdfized value of ¢, n; is, according to Laplace’s formula
(8.2.1), for ]q,rgg}fralues of n approximately normally distributed with

QP : - 2
the paramebers IM{n} = vy ofnd ~ Vi 1e, the variable gy~ =

N o
L@?—"is distributed as x%in § 7.8 withf = 1. As shown in exercise
»L8 3
} i
} -
3 §7.8, the variable x* = E y;2 would, for large », be approximately

i=1 .
x’~distributed with f = & if the yJ/s were independent variables. In

fact they are not, because they satisfy the linear .1‘ela-tion [\/;{yg} =
fnd — [v] = n — n = 0 and possibly other relations such that the
ns have a definite mean or dispersion. However, it may be shown
that nevertheless the quantity

(=2 g, f=k-m 0

¥
im]
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is, for large values of wy approximstely y=disiviboed, L with a1
¥ . I

ber of degrees of freedom Jo= = mo e the ol %, of groups

1 rhi e observations are clussitie miinn= 1 he tunlier, m, o

into which the observati, 5 . | i

relations between the n/s.! Fhios, Yor Lurge v, tline probail vP{x>2

xrY) will be given approximately by Tuble Vopiving v,.% us o function

of fand P. If in one single samiple the value of ¢ v_y-mw]s the xs
corresponding to P2, say /2 = BYLH s crstomuary o r-u_nr.u]c;r 1h§ 0b»ser-
vations to show a significant deviation fornn the theoreriea [0 ribution,
(It is here assumed in practice that (. elitsifies oy siteh th‘at.alg
n; > 8.} Wewish (o stress that swel, et et Ll ! o\l .‘Q_fﬂhsiw{l:
tests, must be applicd with cerliin fuecl,  |lra ,’j},!r-”f]isl r[.Euniltm of X
defined in (1) is only asympiotically x"’-cIi.\;J\Nrﬁlt-tT. .-‘*t‘f'mlf_i] _thjs
test does not take into aceount Lhe signs ikl lor of {he (1(.3\flat-1c!ns
R — vy, and thus the test does not Jiselio o=l s_\'.wit‘mitltlfj.dE'v"la-
tions. Third, the test js only negative Miviey onlv o possibility fﬂf_
rejecting theoreticu] distributions &]];1\']]1;{ foo sirong [11.‘4.‘1;1‘”1‘981.118.115
with observations, Fourth, it BCEOmpletely arbiirary which Limt,
usually 59, is chosen as the leyolof siguificance, jusi as il is also com-
pletely arbitrary that this spgeific test is chosen amon g many othell'
Possibilities, Applying anisuch tests niechanically may easily vel
the fundamental faot thaﬁt} z;s stressed throughout this book {cf, e
§9.3), it is o subjectifle, question whether or not a mathematical modd
Jits observational faels” The degree of agreement can only be settled
by each persorfednd for cach problem separutely. (17, in spectro-
500py we would demand & much higher degree of qgrecment than in
biology.) "

Exasfiple. In the example in §10.4 we first. have to group together
theddst Tour classes, since for each of them n; < 5. Ilaving done this
WEEEt x” = 12.88 (check!). Having ks =

= 12 classes and m = 2reilﬂ"
. B alue
"\igons between the 7S, via., total number 7 — 2608, and mean va
W = 387, we

have f = 12 .. o _ 10. From Table V we ’L-hen,g?t
Xo.05° = 18.307, and since the x? ohserved lics well within this hlmlt
the test does not give any reason to reject the theoretical distribution:

Exercise. SBhow that in
ation x? = .62 with f
F=7-3=4 What

the exampie in §10.5 we get for the asimuth de:t}J
=5 -3 =2 and for the height deviation x2 = 1.01 ®
does the test show in this case?

! Bee, e, Cramér: M athemaiical m,

- he
ethods of slatistics, Chap. 30. Why deest
above statement

not follow directly from our §12.67
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n!

By n! {read factorial ) we understand the number? '\i\

Al =alm —1)n —2) - --3:2-1 \\

- 1 -y - - + - X} W
if nis a positive integer. By partial integration we find that for suchailues of =
3

#

n! = fw et dt (e = 2.71828 - - ; l;’&v
0 NY

putting the integral equal to f{n), we find :'\\“' .

W

= k] :\6\\
flmy = — f (et = [—~t”e“ lo ¥ nﬁt“‘le"‘ @t = nftn — 1),

2\

gince lim "¢~ = 0. Tepcating this proc,qss e ﬁnd fin) = n{n — 1) - - 2-

f—r
ﬁ; e tdi =nl, It may be sho\\{l

—1 we therefore define n! us the value of the
Thus in

that the integral exists for all values of

n > —1, and for an arbitrary an&
integral. The funetion T'(4 }\ n — 1)11s called the gamma funetion.

partigular 01 = j; Ftelh= 1. (TFurthermore it may he shown that 2! may be
PR

defined for all t'omplel%”values of z such that the relation 2l =z (g — 1)1 found

ahove is satisfied %"
It may bo\h(}&sn that for large
formula \\

‘v i
o) = il [ . : <1
\.>*w n! i (6) exyp [12%] |9'| )

1f we put ¢ = 0 the error is already

values of n we have the so-called Stirling’s

where § is 8 certam number depending on #.
less than 109, for v = L.
By means of the substitution gz’

= 2
-[0 g2 di,

he expressed by means of the previous

=ta> 0, the integral

which is often needed in probability, may
integral, and vice versa. We obtain

1For a more detailed disenssion a8 well as proofs see the list of references.
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n -] ]
1 1
Ine—nzﬂ dr = ————— tm‘Ee—s f(n—l)/‘,’ 1 =
ﬁ gtz o 2 .\/E g7 6 g dt

1 no—
getliz \ ™ 97

Putting # = 0, ¢ = 1 and 2? = £*/2 we thus find from (7.1.2)
1%4(~15)! =L T = 1/(2 \/Efm G = /72,

e, (=31 = v/7. From ihis we find (el = L5(—14) = ,\é‘} (84)!
) N\~
35034)! = 3¢ V', (35)! = 34(36)! = 13¢ \/7, and so forth.. W)




APPENDIX 2
Matrix Theory

We shall here shortly review the fundamental concepts end theorems of the
theory of matrices.?
1. By » matrix wo understand a reetangular scheme of numbers, the elements,
denoted here by small lotters, while the matrices themselves are denotcdh\(\

capital, boldface lottera: -
(T80 [E5H] ol 3
iz g2
A=4 = {a-rs} ]
FHATL
thmny  Um2

We say that 4 has m rows and n columns. In particgl:};, for n = 1, Aiseallod
$

2 column matriz, for m = 1a row matriz. For 1{\&\?& = 1, A reduces to a number.
The elements are also denoted (Adra C N
2, We guy that two matriees 4 and B are identical, A = B, if they have the
sume number of rows, the same pumber gheolumns, and ¢y = br for all r and #
3. A zero matriz, 0, is a matrix_all\glements of whick are 6, @ = 0. We
stress that there exist infinitely manﬁ?éro matrices, one for cach \-‘n.!uc :}.f moand #.
4, Interchanging rows and ;Qiumns in A we gt a new matrix with nrows

.

and m eolumns, called the {é&z‘éposed matrix of A and denoted A*.

mn

5. By the matrix «d)gan arbitrary number, we understand the matrix abtained

when all the elcmen{é,df'zi are multiplied by «, e,

‘\'”: ad = a{ars} = {dﬂrai-

2
6. If twq\ﬁﬁt.rices Aand Bhavethesamen
of mlurp:n}.\we define their sum
e 4B -C

\\./
\ 3 . mh mn
4

as the matrix having the elements

umber of rows and the same number

Org = Hpa —}-h,—_g,

ms aud differences are valid.

By this ition al 1 rules for su
¥ this definition all the usua trix A is equsl to the pumber of rows

7. ¥ the number of columns of one ma

of & second matrix B we define their pradiuct
L)
A-B =C

mn  RP mp

1For o more detailed discussion 88 well as proofs see the list of references.
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a5 the matrix having the elements
T

6rs = Ge1b1s + Qrabas + - ¢+ 4 Gpubp, = E Eribys.

t=1

Thus a product hag as many rows as the firet factor and as many celumns as the
second factor. For this so-called row-columm-product the sssocialive low is valid

A-B)Y-C=A:(B-€

WL ny m M owp pg

85 well a3 the distributive low . &\
N
A B+ QO =4+B+ 4.C 7
mE A L3 Wt np MR an (’, o
(4 +B)-C=4-C+B-C,
hee NS np T by AW " ""a

However, the commutative lgw, 4B =8B+4, is in gmié?gl nof valid. For
example, if the number of columns of B differs from the r}uﬁ},hm' of rows of A4, the
sccond product B+ 4 cannot even he formed althoy ghsheMirst one can,

8. For a product we have \¥;
4 '\ T4
(4-B)* = B« 45" (
ma ong nn \m?\
NS

.\\ 4
which rule may immediately be generalized t-*b.products containing more than two
factors, N
9. A quadratic matrix, 4, is a matrisyfor which the number of rows is equal to
L N

«a3
R

the number of eolumns. N

0. A quadratic wmatrix g ca}lé‘& symietric if 4% = 4, e, o, = a,, for all r
and 3. For an arbitrary mz;,t-r\rik 4 both products 4+ 4% and A4* - 4 exist and are
s¥mmetrie, although thes, li@t‘[ not be idenfical,

11, A diagonal matfix ¥ & quadratic matrix for which thes = 0 when » = &
The clements o, areealléd the diagonal elements.

12. A untl matrin$%/s disgonal matrix for which are = 1. It is denoted E (or
1}, and we havey

\M AE=E-A=4

foran arhﬂf@w matrix 4 for which the products with Eexist, We stress that there
exish infivitely many unit matrices, one for each valuo of .

A3{ By the detorminant | 4| of a quadratic matrix 4 we understand the determi-

-1113‘; [cre]. In partieular, if 4 is a diagonal matrix, (4] = a11a28 + + ¢ Gun. W
always have | 4% = [4]. We also have |4 - B| = l4; - Bj.

14. 1If IA| > 0 there exists one and only ong mat}-ix, called the reeiprocal matrix
of 4 and denoted 41 = A, for which

A Al =41 4= F,

Il n > 1 the elemenis of 4! are given by
K,

AN, = 22

( )sr ]7|,

where K., is the cofactor of the element @re in the determinans | 4|, i.c,, (—1)7°
times the minor obtained from |4] by taking away the rth row and the sth coluzan,
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In particular, if 4 is a diagonal matrix, A=Y s also & diagonal matrix, and

1
AT =
&rr
15, If |Af 5 O the matriz equation
A-X =8B
has one and only one solution obtained by multiplying from the left with AL
A1 4. X =X=4"1-B. p;
X '\\
In the same way the matrix equation A N
K }x’
Y-4=8 :"\\"...

No/
has for |/I| # 0 one and only onc solution obtained by nlult-iplyingﬁtgm the right
3

with 471s p
Al e V=B d) ¢
Yed-at=¥% B4 (“x{

"\
We stress that in general X = Y. ~\\'
16, Tf 4~ and B! exist, then \\,,

(A4 Byt = Bl _:’\{.o
n &

.\\}

w/
17. A homogeneous, quadratic form ‘2,;1; ayTiti, @i = Gy MEY be written
NI o
az X%+ A+X, where 4 = {drs} apgi’gf‘is the column matrix with the elements
Ty, v v, Tae o S i '
18. An orthegonal matrix ig'd\\sgﬁldratm matrix for which

\'\\ﬁ-ﬁ = 4% A=E.
For an orthogonal mafrix |4| = £1and 4" = AL _
19. Int-roducing,ih:X* . A4 + X new variables by letting
o X=F-Y

& \d nl nn =l

Jx\\ x*. 4.-X =¥*-B- Y, B=FtA4-F.

ie matrix there ewjsta an orthogoma) matrix F guch that

N
% i e have ]A| = |B| = bubsz - - - b

ig 5 diagonal matrix. In such a case W
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TaseLe I
The Normal Distribution (§7.1)

¢ 0] T (L) 2@ ~1
0.0 0. 30894 0.50000 0.00000
0.1 .30605 .53083 . 07966
0.2 .39104 57926 . 15852
0.3 .38139 61791 .23582
0.4 86827 .B3542 .31084
0.5 0.35207 0.69146 0.88292
0.6 .33322 72575 .45150
0.7 .81225 75804 .51608
0.8 . 28069 78814 . 57628
0.9 . 26609 81504 63188
1.0 0.24197 0.8413¢ 0. 68268
1.1 .21785 . 86433 72866
1.2 19419 .88403 . 76986
1.3 17137 .90320 .80640
1.4 14673 .91024 83848
1.5 0.12952 0.93319 0.86638 N\
1.6 11092 -94520 89040\
1.7 .09105 .05543 91086 .~
18 07893 . 96407 .02818
1.9 06562 .07128 #4256
2.0 0.05399 0.97725 . “0.95450
2.1 .04398 (082144 N 96428
2.2 08547 98610, .97220
2.3 .02833 .g8hes’ 97856
2.4 .02239 - 91RO .08360
2.5 0.01753 « (70799370 0.98758
2.6 01358 ()7 99534 LBU068
2.7 .01Q§g\ .99653 .99306
2.8 Q072" 00744 .09488
2.9 ,<§L 05 .09813 . 06626
3.0 ,0N0.00443  0.99865  0.99730
3N 00327 .99903 . 99306
32 .00238 .95931 .00862
3.3 00172 . 09952 .99004
3.4 .00123 . 99966 09932
3.5 0. 00087 0.99977 0.99054
3.6 . 00061 .99984 99968
3.7 .00042 . 58980 . 09978
3.8 .00023 .99993 . 09086
3.9 00020 .99995 .99990
4.0 0.00013 0.99997 0.45994

THE NORMAL DISTRIBUTION

TapLe II!
The Normal Distribu-
tion (§7.4)

P ¢
1.0 0

0.9 0.12566
0.8 0.25335
0.7 0.38332
0.6 0.52440
0.5 PLEH49
0.4 ‘ 8584162
0.3 A1 03643
0.2 o\ M1.28155
0.1 ™ 164485
005 ° 195006
'j5> 1 2.57583
0.001 320053
10 3.80059
10-3 4.41717
10— 4.80164
109 5.82672
10-% 5.73073
10-9 6.10941

! This iable is reprinted from Table I of Tisher and Yates, Statisiical T'ables,
Oliver and Royd, by kind permission of the authors and publishers.



TanLe 11D Tasug IV?
The t-Distribution (§7.9) The r-Distribution (§7.10)

1; 0.1 0.03 0.01 0.001 P 0.1 0.05 001 o001
1 6.314 12.706 63.857 636.619 { 1.397 1.409 1414 1.414
2 2020 4.0 9.925 31.508 2 1.55% 1.645 1.715 1.730
3 2.353 35.182 5841 12,941 3 1.811 1.757 1.918 1.982
4 2.132 2.776 4.604  8.610 4 1.631 1.814 2.051 2.178
§ 2015 2.571 4.032  6.850 5 1.640 1.848 2.142 2.320
6 1.943 2.447 3.707  5.959 6 1644 1.870 2.208 2.447
7 1.805 2365 3.499  5.405 7 1.647 1.885 2.256 2.540
8 1.860 2.306 38.355  5.041 8 1.648 1.805 2,204 2.6l
9 1.833 2.262 B3.250  4.781 9 1.64% 1.003 2.32¢ 2,678
10 1.812 2228 3.169  4.587 10 1.649 1910 2.348 2730
Il 1796 2.201  3.106  4.437 11 1.640 1,916 2.3068.72.774
12 1782 2,179 3.055  4.318 12 1.649 1.020 2385 2.812
13 1771 2.180 3.012  4.221 13 1.643 1.92352.399 2.846
14 1.761 2.145 2.977  4.140 14 1.649 1.99%22.412 2.874
15 1.753 2.131 2.947 4.073 15 1.649° 3928 2.423 2.899
16 1.746 2.120 2.921  4.015 16 1,5§;1.931 2432 2.921
17 1740 2.110 2.898  3.985 17 peds 1.933 2.440 2.941
18 1.73¢ 2.101 2.878  3.022 1810640 1.935 2.447 2.959
19 1.729 2.093 2.861  3.883 101,649 1.936 2.454 2.975
20 1725 2086 2.815 8.850 (\20 1.640 1,037 2.460 2.990
91 1791 92080 2.831  3.810.0% 21 1.640 1038 2.465 3.003
92 1717 2074 2.819  3.78% 22 1.648 1.040 2.470 3.0J5
23 1.714 2.080 2.807 &.767 o3 1.648 1.941 2.475 3.026
24 1,711 2061 2.797 Qs.ma o4 1,648 1.041 2,479 ggg;
25 1.708  2.060 2.78{(5 3.725 25 1.648 1.942 2.483 3.0°
26 1.706 2.056 2077 3.707 of 1.648 1.943 2.487 gggfi
27 1,703 2.052 m4271  3.690 97 1.648 1.043 2.490 3.

- %4 1648 1.044 2,492 3.071
28 1.70)  2.04R\$R2.763  3.674 28 4 !
‘ ) . - 18 1.045 2.405 3.078
20 1.600 2045 2,756  3.659 20 1.648 2400 2 0%
30 1697 _gnp42 2.750  3.646 20 1.648 1.945 2. :
e/ e
35 1.6890 2.030 2.724  3.591 85 1.648 1.048 2.000 g
40 1,68 2021 2,704 3551 40 1.648 1.350 2508 ke
45, (670 2.014 2689  3.522 45 1,64$ LN 2 316
5 Y1676 2.008 2677 8.407 50 1.647 L. .
37 3.186
60 1.671 2.000 2660 3.460 60 1.646 }gfﬁ»i ggi; Y
70 1,667 1.995 2648  3.430 0 L o5 2.647 3.2
80 1.664 1.090 2.639  3.416 80 1O 1lgs6 2.550 3.220
90 1.662 1087 2.632 5.0 o0 1% esc 2.5 327
00 1.660 1,084 2.626 3.391 100 1. :
2.556 3,237
120 1.658 1.080 2.617 3,37 120 1.646 1.967

2 18 abble via ed fmm. Table III Of I‘lShE &nd Yates, Stflﬁsf'&ml g abfes,

e,
Ofiver and Boyd, by kind permission of the authors &?)d pl;-Elgi;r?:S'eEsk. Mat.-fys.
® This table is abbreviated from Table 110 Arley, Dansi g

Medd., Vol XVIII, No. 3, 1940. .
2
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TasLs V!
The x>-Distribution (§7.8)
P 0.95 0.1 0.056 0.01 0.001
f
i 0.00343 2.706 3.841 6.635 10.827
2 0.103 4.605 5.991 9.210 13.815
3 0.352 6.251 7.815 11.341 16,268
4 0.711 7T 9. 488 13,277 18. 465
5 1.145 9.236 11.070 15.086 20,517
6 1.635 10.645 12.502 16.812 22\\"37
7 2.167 12.017 14.067 18.475 2244322
8 2.743 13.362 15.507 20060  ¢\.26.125
9 3.325 14.684 16.919 21.666 27 87T
10 3.940 15.987 18.307 23.206 .7 20,583
3
11 4.575 17.275 19.675 {61 25 31964
12 5.226 18.549 21.026 . N(26.217 32.909
13 5.892 19.812 22.362 27.688 34.528
14 6.571 21.064 23685\ 29.141 36.123
15 7.261 22.807 244@&. 30.578 37.6907
N
i\
N
16 7.962 23.542 4, 26.296 32.000 39.252
17 8.672 24,760, 27 587 83,400 40790
i8 9,390 259908 28,869 34.805 42.312
19 10.117 27201 30.144 36.191 43.820
20 10.851 §{&412 31.410 37.566 45.315
21 11,591 ¢ '\\" 29.615 32.67! 3%.932 46797
22 12.338 30.813 33.924 40,289 48.268
23 13,0810 32.007 35.172 41,638 49,728
24 I8, 848 33.196 36.415 42,980 51,179
25 pladil 84.382 37.652 44.314 52.630
:~\z.
26 .\‘w’ 15.379 35.563 38.885 45.642 51.052
PIAN 16.151 36,741 40,113 46063 55.476
280 16.928 37.916 41.337 48.278 56.893
A\ 29 17.708 39.087 42 357 49.588 58.302
\J 30 18.493 40. 256 43.773 50,802 59,703

! This table is abbreviated from Table IV of Fishor and Vates, Statistical Tables,
Oliver and Boyd, by kind permission of the authors and publishers,
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Tasre VIt
The w*(or F-)Distribution (§7.1 1}; P=0.05
b 1 2 3 4 i 6 8 12 24 a

2

1 1614 1995 215.7 2246 230.2 234.0 238.9 2439 249.0 254.3
2 1831 19.00 19.16 19,25 19.30 19.33 19.37 19.41 1945 19.50
4 1013 9.55 9.28 912 901 894 88 874 864 8.53
4 7.71 6.894 6.59 6.39 6.26 6.16 6.0¢4 3591 577 5.63
b 6.6 4.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36

6 5.00 5.14 476 4.53 4.30 4.28 4,15 400 3.8 3&0
7 05.3% 274 4.35 4.12 3.97 3.87 3.73 357 3.41 3.
§ 532 446 4.07 3.8¢ 3.69 3.58 3.44 3.28 3.12,1248
9 512 4.26 3.8 3.63 3.48 3.837 3.23 3.07 zg}m 271
10 4.96 410 371 348 3.33 3.22 3.07 2.91 27 2.54
11 4.81 398 3.50 3.6 3.20 3.09 265 2."39\\2.'61 2,40
12 475 3.8 349 3.26 3.11 3.00 2.85 28 2,50 230
13 4.7 3.80 3.41 3.18 3.02 292 2700260 242 2.21
14 4480 3.74 334 311 296 2.8 270\2.53 2.35 213
15 454 3.68 3.20 3.06 290 279 28 248 229 207
16 449 3.63 324 3.01 2.8 2M\25 242 224 201
17 445 3.59 3.20 295 2.8 270Y 2.55 238 2.19 1.96
18  4.41 3.56 3.16 203 277,266 251 234 215 192
14 4.3%3 332 3.13 200 2.74N\2.63 248 231 211 188
20 435 3.49 3.10 287 24 260 245 228 208 1.8
20 452 347 2307 2.8 D8 257 242 225 205 18l
22 1430 344 3.05 'gz\ 266 2.55 2.40 223 203 178
238 428 342 3.03,(% 264 253 2.38 220 200 1.76
20 426 340 3.0KWD78 2.2 2.5 286 218 198 178
25 4214 3.3%8 Qo> 2.76 2.60 249 234 2.16 196 1.71
2% 499 3.37Fos 274 259 247 232 215 105 1.69
27 421 3@/ 296 273 257 246 230 213 1.93 12;
28 490 88L 295 271 256 244 320 212 191 i.m
29 4.18\§8z’33 2,03 270 2.5t 243 228 210 190 164
30 4% N3.32 202 269 253 242 227 200 189 1L

7
7
é
o]
=
o
[~]
=
L=
—
=T
=]
-
o
=

0 (m0s 3.23 2.8 261 245 2.3
g5 2.0 102 1.70 1.39

1.83 .61 1.2

)
60\' 4.00 3.15 2.76 2.52 2.37

120 392 307 2.68 245 220 217 202

194 L3 1.52 1.00
Vates, Statistical Tables,
ublishers.

© 3.8 293 260 287 2321 209 1
 This table is abbroviated from Table V of Fisher an.
liver and Boyd, by kind permission of the authors and p






PROBLEMS

Problems to Chapters 1 throngh 3

1. From each of 6 deeks of cards, each containing 52 cards, 1 card is drawn at
random. Find the probability of 4 being red and 2 being hlack eards.

2. From one deck of 52 cards, 6 are drawn at random. Find the probability
of 4 heing red and 2 being black eards.

3. Find the probability of getting exactly once the result 6 in 4 throws wi\t@
5, die. A
4. The sum of a column of numbers is & number with 7 digits. Emdthe
probahbility of gnessing this number. 'S\

3. Four pasitive integers are chosen at random. Find the pmbgbiiit-j"’ of their

N

having a common Tactor. {Use the formula p \\
w '\ &
H ( . ) 90 b,
S B \
pitf o ND
i=1 ' D

W

where p; denotes the 4th prime number.) \\\

6. A deer runs with constant velocity o in'the direction away from a hunter,
The probability of the hunter bitting the @eer when shooting fro_m the d}stance
8> is assumed to be #2/d% He firgs ane shot when the deer is at o distance
d = 2rand, if this is a failare, one at ¢he Jistance d = 3y, and so for'th: However,
at most he fires 7 shob.  What is the probability of the hunter's shooting down the
deer? "\ N
7. Deduce the gencral fm;,iilhac that are analogous to the addition law IV, for

Pld 98 + ) and P(A+B+C+ID)

8. Find the prob&ﬁi’l{ty that ot least 1 playerina bridge hand will get 13 cards

of the sume colop, \fTse problem 7.}
9. Tn bridge Aplayer 4 has 2 aces.
2t least 1 of %he' 2 remaining aces.
10. Ambyént has the probability 1/10 of oce
the cyemt beeurs af least 10 times in 100 trials.
'ch A shipowner cxpects 2 boats with ba:c!auas.
ohall banans cargos on boats sre spoiled in tramsit. e
{a} both freights arriving unspoiled, {#) of only 1 arriving unsp
neither of them arriving unspoiled. ) )
. 12, What is the probability of t-orpec}filrz% a Shél; \;;hgl; ;?
red and the probability of hitting with 1 torped .25¢ o
13. Aman gta.nds gt the origin of a pumber ax18 a:_ld throws hri:;-ds ?,1:;3; taa;lg ﬁi';tilz
n0o0in, If the result is heads, he walks 1 step of ymnit length to 1'1 :f&re thel o
i tails, 1 to the left. If » denotes his absc%s‘s% sfter 10 throws, W
sible values of &, and what are their probabilities?
14. A torpedo boat is ab a distance d from & targ
of hitting with 1 torpedo. It approaches the targe o
end fires 3 torpedoes. Assuming the probability of hi
221

Find the probability of his partner having
urring. Find the probability that
The statistics show tl_mt 1%
it. Find the probability of
d, and (¢} of

1 all 3 torpedoes may be

¢t and has the probabil'ﬂfy 0.05
+ to half the previous distance
ting to be inversely pro-
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portional to the square of the distance, find the probability () of 3 hits, pa; (b)
of 2 hits, s; (&) of at least 2 hits, p,; () of at least 1 hit, pg; and (¢) of no hits, p,.

15. The probubility of bitting a fixed target with 1 gun al the distance d s
given ag 0.5. At what distance from a target must o battery of 4 guns be placed
in order that the probability of exuctly 2 hits in a volley eguals 3/327 (The
probability of hitting is assumed to vary inversely proportional with the square
of the distance.)

16. A bus stop is passed every 4th minute by a bus of line 4 and every 6th
minute by one of line B. Assuming the departing times of the two lines to
be indcpendent, find the probability (z) that the frst bus arriving is of dine 4,
and (B) that either bus will arrive within 2 minutes. N\

17. Twao batteries A and B with the same probability of hitt-ing,' gaeach fire n
shots against » common target. Assuming cxactly 2 hits smong&l&/2n shots,
find the probability {a} of both hits coming from batfery 4, (fg)‘@‘f} 1 hil coming
from 4, the other from B, and (e} of both hits coming from BN,

18. The probability that a man who has just passed his pfRbirthday dies before
his next birthday is P,.  Find the probability that a memwho has just passed his
50th birthday will die within the next 5 years. \%

19. 4 and B play heads and tails, A throws Girgt, apd wins if the resull is heads,
If it is tadls B throws and wins if the resolt is hea&\ "I it is tails A throws again,
and so forth. I after 2n throws neither A nep® has won, a third person ¢ has won
Find the probabilities Pa, Pp, Pe, of A, B,gndC winning.

20. In a card game only the cards 1,2, ;™ -, 10 of onc definite color are used.
The game iz played by 5 persons an’d{coﬁsists of having the plavers, in a definite
order, get 2 cards each. A player &im® or loscs depending on whether or not the
sum of the numbers of his 2 cards) i®equal to 11, What s the probability (a) of p
of the players, designated hgferzhand, getting 11, the 5 — p remaining players
not? (b} of just the plaven .NJ\eﬁlg the first to get 117 (¢) of none of the 5 players
getting 117 N/

21. Let the proba:bijit that: the weather on one day is of the same kind (rain
or no rain) as on tAc previous day be p, and let I be the probability of rain on the
first day of thayéar. TFind the probability, Py, of rain on the nith day, and find
the limit of 1?-,\’fof n— W,

A Problems to Chapters 4 through 6
2% .',:‘thee batteries with the probabilities of hitting 0. 1, 0.2, and 0.3 respeetively
e hifire 1 shot. TFind the probability of each of the possible number of hits.
»Find the distribution function of the shots.

\ / 23. Let the random variable x denote the number of throws with a coin until the
result “‘heads” appears for the fust time. Find the distribution funciion, the
mean value, and the dispersion.

24. Let » have the probability density

0 for —m(ﬂé-—l
n
2 1
n 4+ ni for ——=f=1
o) = » )
% - n¥ for 0<f=-—
n
1
0 for =t w0



PROBLEMS 993

Find ®(13, i, and . Draw the graphs of »(f) and &(t). Show that, for » — w,
B(f) — el

25 Two nmmmbers are chosen af random between 0 and 1, Find the probability
that their product x will be less than ¢, 0 < ¢ < 1. Find x and ¢ for the random
variahle x.

26. On o eirele three points 4, B, and ¢ are chosen at random.  Find the preba-
bility of the triangle ABC heing acute angled.

97, Three numbers a, b, and ¢ are chosen st random between 0 and 1. Find the
probability of the couation

gzt + 2z +e =0

having real roots. _ \\’\
28, A random variable « is assumed binemially distributed such that z = 2 and
¢ = 3. Find the probabilities ‘4 w‘:x

P@B<x<h), PB2x<h), PB<xsh), and PE S~ 2 5

29, Vive enitmersted persons are placed at random on 5 chairy er}u?erﬁtcd with
the same numbers as ithe persons. Let x be the random variable S¥hich denotes
the number among the & persons who are placed on chairs with, :} pumber identical
with their wn. Find the distribution function of x as well\ag% and o.

30. An urn contains 4 red and 3 black balls.  Tour baﬂl&'eire drawn at random.
Tet the random variable x denote the number of re(\I talls among the 4 drawn.
Find the meun value and dispersion of x. Solve hagame problem when the balls
are drawvy successively and cach ball is put backd (B¢ urn before the next drawing.

31. From a collection of 6 balls, enumeratedifzom 1to 6, 3 are drawn at random.
Let the random varisble x denote the largést of the numbers so cbtained. Draw
the graph of #’s distribution funetion,, ang find its mean value and dispersion.

32. A rendom variable x has a given probability density ¢(¢). Find the probe-
bility donsity of y = V/xand 5 = ‘oes x. In particular, assume {t) to be normal.

33, A random varisble s hastho probability density

\ a
o U TIrS
A/
Determine the \r&.ljm;of g. Next find the probability of th
tions being loss fhax 1.

34, Lot x %5: random variable with an a 1
mesn value:’qu\:tnd digpersion ¢. TFind another random varia
rectangali® distribution with the seme # and « a8 .

A3 random variable x which can assume only
riththido-normal distribution

1 (né—a)’]dt
dcb:@(i)dﬁ}'mﬁXp[-’T :

e largest of two ohserva-

rhitrary digtribution having finite
ble & so that »” has &

positive values has the logsa-

Find the mean value a jspersion of . - .
36. Ar andgnlfifia&i i]\\?hich can assume only positive values has the proba

bility density

da = ¢(t) dt = g di.

Tind the digtribution of

Tot @1, - -, z, be » independent observations of &.

z =x1+xg+-"+xy

Ed

and the mean value and dispersion of 2.
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37. Let x be a random variable with given distribution function ®{f} for which
u = 0 and ¢ is finite. Show that

2

éza.io for t<0

) Ft ot

" . ? e im0
s — T
=t

Furthermore, ghow by an example that these inequalities cannot be improved.
38. Let x and y be two discontinuous random variables for which the possible

valucs and probabilitics are 1, - - -, o and p1, - - -, Pr, ¥1, - - -, yrand
g1, + + + , grrespectively. Let the joint probability of x = #; and » = yphe &y,
and let £ = . Defining 7% by N

£

k I }
1 (¢ = pati)® N o
1-2 - — —_— { N
{—1 Dty :'\\ ’
i=L1J=1 4

show: (1) that 0 =+ = 1; (2) that the neeessary andisufidient condition for
2 = { is 1that x and ¥ are independent; (3) that the NeGENSATY and sufficient con-
dition for r? = 1 is that y is completely dependent, 6y, ie, that uny definite
value of x will with certainty be accompanied !:Q:@ definite value of y.

39. Let us consider 2 players at the same bridge teble, and let the random vari-
able x denote the mumber of red eards of the ﬁ‘.rgt‘pla}-'er, # the number of red cards
of the second player. Tind the corrclationeoefficient o{x, ¥}.

40. Let = = (x, ) be an arhitrary tw‘@.—’d'imensional random variable such that
both the first- and second-order momentsh K P Pz, My, 300 gy are all finite and
that o; > 0, oy > 0 and |p[ < 1. ﬁhow‘tha{u a uniform distribution of probability
mass 1 over the arca cncloged by,@k so-called concentration ellipse

1 = %N — i — )y — )
o N + p =4

TeT Y Ty Ty Ty

has the same first- andhgetond-order moments as z.  Next show that the two mean
square regrcssioz.l“ ling¥ are the diameters of thiz ellipse, conjugate to the r- and
y-axis. Y

41. I 1 'anﬁ\t‘; are two random variables both having the Cauchy distribution
with the parg}neters #1, @1 and s, es respectively, show that + = x; + »2 has the
Cauchj{'\i‘istributioﬂ with the paramoetors p = py + po, & = a1 + az

4%? g‘et’ the probability of 1 bacteria heing transformed into 2 in the time
interwdl di be A df. Find the probability P;if), ¢ =1, 2, 8, - + - , of finding ¢
hacteria at the time £ if at ¢ = 0 there was 1 present,  Next find M7{x} and o =},

43. Solve problem 13 by means of generating functions.

44. An urn eontains » balls numbered 1 to ».  One ball is drawn at random,
the number is observed, and the ball is put back into the urn.  This experiment Is
repeated » times. Tind by means of gencrating funetions the probability that the
sum of the X observed numbers has a given value.

45. Find the generating function for the binomial distribution. Apply the
result to show that the sum of two binomially distributed variables is again bino-
mislly distributed in case 8, = @y.

46, Find the generating function for the Poisson distribution. Apply the result
to show that thesum of two Poisson distributed variables is again Poisson distributed.
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Problems to Chapters 7 through 8

£7. Tf x is normally distributed with ¢ = 0, find the distribution of v = &=

48, Shooting with a gun we assume the azimuth deviation, x, and the range
deviation, y, to Lo independent and both normally distributed with the same dis-
persion o, An infinilely large, horizontal target with origin in the center of impact
is divided by 1 straight lines with the equations # = 0.67450, £ = —0.6745s,
y = 087450, and y = —0.6745s, Tind the probabilities of hitting the various
parts in whirh the target is divided.

49, N Lieans of one sort, 81, are mixed with Ny beans of another sort, 8§, Ay
and ¥y ure hoth assmmed to be large numbers, and the length of both sort of Bk@ns
is assumed to e normally distributed with the parameters u, ¢1 and ug, g Tegpec-
tively., LFind the distvibution of the length of the beans in the mixfure and its
mean value and disperaion. . \/

50. The height of all men at the sge of conseription is assum “ta be normally
distributed with ¢ = 170 c¢m and @ = 5 em. At the medifal exdmination all
those are rejected whose height is less than 155 em.  Find thﬁ Yioight distribution
of the admitted men, and write down the equations for the meap value and the
dispersion. Wil they be smaller or larger than 170 {id 5 om respectively !

51. A random variable  is normally distributed ‘V:E'l “the parameters g = 0 and
Let = be the largest of these

v. We perform two independent observatiopsofie.

A

two values, Show that {
e
Mz
NV
32. Lotay, xu, - - - , 3 bew ind?:}i’eliderlt ghservations of a normally distributed

random variahle with ¢ = Oanéhg = 1. The largest among these values we denote

3. Find the distribution fu.rk;hon and the probabil [ty. der.lsit}' of #. abl
53. Let x, v, and z e ghree independent, normally dle.l‘lbutl.%C.l racndon.l varial ltlzs
all with the same paxamebers g = 0 and o Find the probability density for the

new random variahléa? + »* + 5%

54. Let x andhglie two independent, norm
Find the corrc;}s\tidn coefficient of the two new ran

ally distributod random variables.

dom variables x + ¥ and x — ¥.
\» Problems to Chapters 10 through 11

55. ~S{hﬁ\\’ that for the distribution

O 1 ~
@ \Y; do = off) dt =‘-_"_'_3'3 1tl dt,

\9) 201 — &

th(‘i maximum likelihood cstimate of 8 is the larges

2 L |:rnJ . N in 7 out of #
56. Let o cerlt.a,in event have the probabihty g, If the cvent occurs 1

trials, show that z/n is the best estimate of 8. _ ing values
57. Tn 16 measurements of the initial velocity of projectile the following

{in meters per second) have been found:

4449 440 H2.1

—p=iEf

t number among the numbers

4440 4395 4438
4398 4441 4402
442.6 440.9 44£.9

441.8 41,3 M3.7
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Compute the Dest cstimates of the true value, of the dizpersion, and of the disper-

sions of these cstimates,

58. In 15 mcasurements of the latitude at Capetown the following valucs have

been found:
—33°5673)"48
3’32
3’07
3’20
31

—33°56'3750
309
3728
3730
330

fire

—33756'3.°50

2708
3727
3.25

7.
3,27,

Compute the best estimates of the true value, of the dispersion, and of i-k{\glis-

persions of these estimates.

59. Bhooting with a rifle the following azimuth and height deviations J(].'Il upn‘ Ltne-

ters) from (0, 0) have been found:

Number Azimuth Deviation x

1 20
2 -4
3 24
4 16
;] —1¢.5 K.
6 4.5 A\
7 3 \Y,
8 12.5 ™

9 TN

10 ~l6.5

11 XN 6

12 I\ R

i"\
No”

Hei k‘&f)ﬁa Inilom ¥
[\— t: I

LY 6

— i}

-3
-13
-1

Find the mean center of lm’pﬁ,c} the two dispersions, and ihe dispersions of these

estimates.

60, Test whother ang oﬁhc moasurements of problem 59 pould be suspected of
being encumbercd witlheoarse crrors.
61. Test whethemivproblem 59 the mean center of impact deviates «i gnificantiy

from (0, 0), X

62, Test ‘.‘\-Bét{her in problem 59 there is any correlation between the azimuth

and the he&m

deviation,

63. Tnd t\o different serics of shots the following azimuth deviations (in conbime-

ters)ifxﬁm {0, 0) have been found:

‘ First Series

- 3.5

-9
16.5

— 4

(=2 I

6.5
- 2.5

Find the two estimates of the dispersion bused on each separate serics.

e B B RS VI & R

Second Neries

16
12
16

4.5
-1
20

21.5
— 4
9

Next find

the hezt estimate as bascd on the total 15 measurements (cf. §11.10).



4. Test whether in problem 63 the differcnce between the estimates of the
dispersion from the two zeries is significant.

65. Test whether in prablem 63 the difference between the two average valucs is
gignificant.

66. Tl ahscissae, o1 and ae, of two points arc measured.  Applying the rule
of the wniform distribution of the tolerance find the allowed dispersions, g, and
Gay, OF a1 and g when, for the distanee ¢ = g1 — 03 Fa = 0.] mm.

67. The density, d, of air at 07 C and 760 mya Hg is messured by finding {the
weight, m grams, of the air in & container baving the volume V em? et £° Cand p

mm. Hg:
m 760 i g Q
= ——_—11 — 1
4 V p ( + 273) .\
Find the value, the dispersion, and the relative dispersion of d, when ¢

m— 24875V =9803cmd, p=74Limm g $3214°C.
0.0023 g, oy = 1.3 em¥ sp = 0.8 mm Hg, ,:,?«; =0

Problems to Chapter 1INV

6&. Show that 'x:\\,,’
[pecl = lpoo] + E* <P T- € S 4-B1- AP
where A apd B are defined in §12.3, 81:.‘1F L is the matrix formed by the

truc corrections, and Hisan abbreﬁatibﬁ.fbr the matrix mentioned (use (12.4.43).
: ; trix A is defined as the sum

69. The trace (or spur), tr 4, oba ‘quadratic ma
A .

'\
of the diagonal clements, {\A = E i Show thai tT (d-B) =tr (B> A) for
) i=1

two arbitrary mztt.r[.ee%-:..ﬁ and B for which hoth produets exist.
70. Prove that™\™
4 \“’ ki)
\*z}{' Z pio L}
O =1

whosg W17} is given in (1263). Next prove (12.8.5).
M Prove that

4

=eltr (P A" Bl 4%,
(Usc Problem 69.)

mgé*-P-H-é}:a?trH

(of. problem 68), Next ghow that
aipo]} = (n — ol
sen the points 4 and B a base line AC as

well as the angles & = %BAC and g = % BCA have beon measured. The averzgi
values of the measurements havo g,ivend'uh? ;1}11:113}:;5 k:?j:) ;L],J aggdbgf;:}x, @, and B

spectively. Assuming o {m} ¢lal and @ 0 Sndaiele
re??p;ct';;edy;t-pminen;hegl:rigth; of the three sidos of 5 rectangular triapgle we have

measured the two sides and found the values @ and b, as well as thenhrypotj?;ts;e
and found the valoe ¢ Assuming all three measurements to be equally acc )

find the best estimates of all three sides.

79. To measure the distance @ hetw
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74. In an equilateral triangle the three sides and the base height have heen
measiired as
{h, I3, 13, 4} = {501 502 5.00 4.30}

respeetively.  Find the best estimate of the side using adjustment by elements.
75. Bolve the same problem as 74 using adjustment by correlates,
76. Test shooting a gun under increasing wind veloeity perpendicular to the
direction of shooting, the following values of the azimuth deviation have been
found in 10 shots fired with constant time intervals:

(1) 57.2 (6) 59.8 )
() 58.0 (7) 60.4 '\\\
@) 58.1 (8) 60.0

) 59.1 (9) 60.0 RV,
(5) 50.3  (10) 62.2. O

Assuming the azimuth deviation to be a linear function of N\l:ﬂé, Jit) =« + B,
find the best cslimates of the parameters « and 8. ﬁq}ietermjne « and 3
graphically.) SN\
77. For four points on a straight line, 4, B, €, and\P, the six distances 4B,
BC, 0D, AC, AD, and BI have becn measured: \\,
Hi, - - -, ls} = {317 1.12 2,28, 431 651 3.36],
WU

Find the best estimates of the distances usiﬁg\ z;dj ustment by elements.

78. Bolve the same problem as 77 Llsing?adjllsf. ment by eorrelates.

79, The number of telograms in Gerifléiny were {in millions) in the years 1925-
1934 the following:

1925 30 1930 34
192(’K\\ 47 1931 27
1927 48 1932 23
(o8 43 1933 22

> o2 40 193¢ 21

Assuming the nqmﬁ};r“i;o be a linear funetion of time
R ft) = o + B0 — 1025),
find the &t’:cstimates of the paramecters « and 8. (Also determine « and 8
graphigally }
30.\’"]359 four angles of & quadrilateral have becn teasured as

" A\

\ } Ty, e -, L) = (501287 1120177197 1209470967 THRAR LS

where Iy, s, ls, {4 are the averages of 8, 4, 2, and 2 equally accurate measurements,
respectively.  Find the best cetimates of the angles using adjustment by clements.
81. Solve the same problem as 80 using adjustment by correlates.
82. The ordinates of three points, 4, B, and C, having the abscissue 0, 1, and 2
respoctively, are measured as
{1.95, 2.29, 2.14}.

Assuming A, B, and € to lic on one and the same circle with center on the z-axis,
(@ —a)® +y% =

find the best estimates of the parameters o and .
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83. The distances from a point P = (§1, £2) to the points (0, ), (5, 0), {0, 43,
and (3, 6) have been measured aa

th, Iy, I3, 1) = {3.60, 4.26, 2.20, 3.17}.

Find the best cstimates of £ and £z using adjustment by elements.
84. In a triangle ABC the sides a and b as well as the angles 4 and ¢ have heen
measured a3
la, b, 4, C} = [35.1 cm, 61.9 cm, 34°.1, 42°.6}.

Asgsuming that the angles have besn measured with an accuracy twice as large s%\
that of the sides find the best cstimates of «, b, 4, and ¢ using adjustment By
elements. ¢\

83. Solve the same problem as 84 using adjustment by correlates. "\ 7

86. In measuring distances by means of a leveling instrument with horinontal
wires, the distance y is & linear function of that part z of the leve]g'.n%'\gﬁafif observed
between the horizontal wires of the leveling ingtrument, \\

NN

¥ =a -+ 82

NY; .
Corresponding to the given values of y, 40 m, 60 m, 81}{3} and 100 m, the following
values of ¢ have been measured: OO
N\

£\
{0.335 m, 0.502 m, 0.671 m/0.841 m}.

Find the best estimates of the parametersg and 8. o
87. For 10 extra-galactic nchulae the Pollowing velocities, y (in kilometers per
second), and distanees, & (in milions of parsces), have been observed:

#

‘b\\ .

z ¢ ¥
1.204.4 630 9.12 4,820
1.82 890 10.97 5,230
3.81> 2350 14.45 7,500

MNf24 3810 22.91 11,800
H0B.92 4680 36.31 19,600,

Assuming y,t}\t;be: a linear function of z, ¥y = & + ,Bx,‘ﬁnd the best estimates of the
parameters w ind 8. (Also determine o and § graphically.}
38, Z]Qlé pressurc of & gas, p, and its volume, », are known to be related by an

o’ of the f
ec@mo 1e form

/ pp¥ = constant.

Tor the data given below find the best estimate of « by ﬁtt‘ing a straight line to the
logarithms of  and v, taking p to be the independent variable.

0 2.5 3.0
p (kgfom?) 0.5 1.0 1.5 2,
v (liters) 1.62 1.00 075 0.62 052 0.6

89, The sverage number of children per marriagfa, y, in Norway in 1920 for a
given duration of marriage, @ years, Were the following

5 -31
5-6 10-11 15-16 20-21 25-26 ?:0 3
0.4 3.26 4.33 5.14 5.63 5.71.

z
¥ 0.48 2.09
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Assuming y to be a third-order polynomial in =

— 1 -2 3
y = ap + ol + a2® + agx®,

find the best estimates of the paramelers ayg, - - -,
90, The wave lengths, A, of the spectral lines He,
regnlarity found by Balmer:

1 1 .
It 2T ) ie.,

in which m =3, 4, - - %
the following cxperimerdal valucs of A (in Angstrim
best estimate of B (in cenlimeters™'):

1
A

A
6562.7%
4861.33
434047
4101.,74.

4
Yot 4

= A

&3,

Hg, - -« of hydrogen show u
4 m?

Thwmt—4

O\

- and R is ealled Rvdborg’s constant, [or h_\'{‘:mg_rmn&\F'rmn

D find the

units, 1 i~ 10_5&

O

‘\:‘;} ¢
>

2O
\d
3

\
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